KoT-platypus2-7B / README.md
kyujinpy's picture
Upload 7 files
9ef0217
|
raw
history blame
5.82 kB
metadata
language:
  - ko
datasets:
  - kyujinpy/KoCoT_2000
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-4.0

KoT-platypus2

img
CoT + KO-platypus2 = KoT-platypus2

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture

KoT-platypus2-7B is an auto-regressive language model based on the LLaMA2 transformer architecture.

Base Model KO-Platypus2-7B-ex
More detail repo(Github): CoT-llama2
More detail repo(Github): KO-Platypus2

Training Dataset

I use KoCoT_2000.
Using DeepL, translate about kaist-CoT.

I use A100 GPU 40GB and COLAB, when trianing.

Training Hyperparameters

Hyperparameters Value
batch_size 64
micro_batch_size 1
Epochs 15
learning_rate 1e-5
cutoff_len 4096
lr_scheduler linear
base_model kyujinpy/KO-Platypus2-7B-ex

Model Benchmark

LM Eval Harness - Korean (polyglot branch)

Question Answering (QA)

COPA (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-1.3b 0.7196 0.7193 0.7204 0.7206
Polyglot-ko-3.8b 0.7595 0.7608 0.7638 0.7788
Polyglot-ko-5.8b 0.7745 0.7676 0.7775 0.7887
Polyglot-ko-12.8b 0.7937 0.8108 0.8037 0.8369
Llama-2-Ko-7b 20B 0.7388 0.7626 0.7808 0.7979
Llama-2-Ko-7b 40B 0.7436 0.7927 0.8037 0.8259
KO-platypus2-7B-EX 0.7509 0.7899 0.8029 0.8290
KoT-platypus2-7B(ours) 0.7517 0.7868 0.8009 0.8239

Natural Language Inference (NLI; 자연어 추론 평가)

HellaSwag (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-1.3b 0.5247 0.5260 0.5278 0.5427
Polyglot-ko-3.8b 0.5707 0.5830 0.5670 0.5787
Polyglot-ko-5.8b 0.5976 0.5998 0.5979 0.6208
Polyglot-ko-12.8b 0.5954 0.6306 0.6098 0.6118
Llama-2-Ko-7b 20B 0.4518 0.4668 0.4726 0.4828
Llama-2-Ko-7b 40B 0.4562 0.4657 0.4698 0.4774
KO-platypus2-7B-EX 0.4571 0.4461 0.4371 0.4525
KoT-platypus2-7B(ours) 0.4432 0.4382 0.4550 0.4534

Question Answering (QA)

BoolQ (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-1.3b 0.3552 0.4751 0.4109 0.4038
Polyglot-ko-3.8b 0.4320 0.5263 0.4930 0.4038
Polyglot-ko-5.8b 0.4356 0.5698 0.5187 0.5236
Polyglot-ko-12.8b 0.4818 0.6041 0.6289 0.6448
Llama-2-Ko-7b 20B 0.3607 0.6797 0.6801 0.6622
Llama-2-Ko-7b 40B 0.5786 0.6977 0.7084 0.7144
KO-platypus2-7B-EX 0.6028 0.6979 0.7016 0.6988
KoT-platypus2-7B(ours) 0.6142 0.6757 0.6839 0.6878

Classification

SentiNeg (F1)

Model 0-shot 5-shot 10-shot 50-shot
Polyglot-ko-1.3b 0.6790 0.6257 0.5514 0.7851
Polyglot-ko-3.8b 0.4858 0.7950 0.7320 0.7851
Polyglot-ko-5.8b 0.3394 0.8841 0.8808 0.9521
Polyglot-ko-12.8b 0.9117 0.9015 0.9345 0.9723
Llama-2-Ko-7b 20B 0.4855 0.8295 0.8711 0.8513
Llama-2-Ko-7b 40B 0.4594 0.7611 0.7276 0.9370
KO-platypus2-7B-EX 0.5821 0.7653 0.7991 0.8643
KoT-platypus2-7B(ours) 0.6127 0.7199 0.7531 0.8381

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "MarkrAI/kyujinpy-KoT-platypus2-7B"
CoT-llama = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo)

Readme format: beomi/llama-2-ko-7b