lalok/gyeongsan_address_firestation_ko_14000hr_50t
This model is a fine-tuned version of openai/whisper-medium on the lalok/gyeongsan_address_firestation_ko_14000hr dataset. It achieves the following results on the evaluation set:
- Loss: 0.2038
- Cer: 13.6895
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 50000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.286 | 0.0908 | 5000 | 0.2856 | 16.6135 |
0.2355 | 0.1816 | 10000 | 0.2655 | 15.5819 |
0.2454 | 0.2724 | 15000 | 0.2538 | 14.9019 |
0.2073 | 0.3632 | 20000 | 0.2423 | 14.3891 |
0.2314 | 0.4540 | 25000 | 0.2330 | 14.2384 |
0.218 | 0.5449 | 30000 | 0.2260 | 14.5535 |
0.2124 | 0.6357 | 35000 | 0.2181 | 13.7738 |
0.2182 | 0.7265 | 40000 | 0.2118 | 14.0623 |
0.2166 | 0.8173 | 45000 | 0.2067 | 13.9199 |
0.2069 | 0.9081 | 50000 | 0.2038 | 13.6895 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for lalok/gyeongsan_address_firestation_ko_14000hr_50t
Base model
openai/whisper-medium