lalok/gyeongsan_address_firestation_ko_14000hr_50t

This model is a fine-tuned version of openai/whisper-medium on the lalok/gyeongsan_address_firestation_ko_14000hr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2038
  • Cer: 13.6895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 50000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.286 0.0908 5000 0.2856 16.6135
0.2355 0.1816 10000 0.2655 15.5819
0.2454 0.2724 15000 0.2538 14.9019
0.2073 0.3632 20000 0.2423 14.3891
0.2314 0.4540 25000 0.2330 14.2384
0.218 0.5449 30000 0.2260 14.5535
0.2124 0.6357 35000 0.2181 13.7738
0.2182 0.7265 40000 0.2118 14.0623
0.2166 0.8173 45000 0.2067 13.9199
0.2069 0.9081 50000 0.2038 13.6895

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
764M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for lalok/gyeongsan_address_firestation_ko_14000hr_50t

Finetuned
(468)
this model

Dataset used to train lalok/gyeongsan_address_firestation_ko_14000hr_50t