ldos's picture
Update README.md
0701c49
|
raw
history blame
5.71 kB
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: text_shortening_model_v2
    results: []

text_shortening_model_v2

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4449
  • Rouge1: 0.581
  • Rouge2: 0.3578
  • Rougel: 0.5324
  • Rougelsum: 0.5317
  • Bert precision: 0.8885
  • Bert recall: 0.8981
  • Average word count: 11.5929
  • Max word count: 17
  • Min word count: 3
  • Average token count: 16.7071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

No "summarize" prefix

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count
1.7498 1.0 8 1.9424 0.4725 0.2644 0.4207 0.4216 0.8343 0.8502 11.7357 18 0 17.5143
1.5236 2.0 16 1.7731 0.5185 0.2961 0.4661 0.4665 0.8566 0.8646 11.05 18 0 16.6143
1.4381 3.0 24 1.6880 0.5459 0.3212 0.4947 0.4942 0.8773 0.8862 11.5857 18 3 16.8143
1.3895 4.0 32 1.6405 0.5537 0.3275 0.506 0.5061 0.8815 0.8894 11.7 18 3 16.6571
1.353 5.0 40 1.5941 0.5579 0.3347 0.5124 0.5119 0.8839 0.8933 11.7643 18 4 16.7429
1.3026 6.0 48 1.5568 0.5585 0.3379 0.5132 0.5129 0.8823 0.8945 11.9714 18 4 16.95
1.2624 7.0 56 1.5359 0.5696 0.3466 0.5202 0.5195 0.8837 0.897 12.0143 18 5 17.1143
1.2481 8.0 64 1.5186 0.5736 0.3517 0.5241 0.523 0.8849 0.898 12.0214 17 6 17.1714
1.2089 9.0 72 1.5055 0.5732 0.3499 0.5256 0.5246 0.8846 0.8979 12.0357 17 5 17.2214
1.1845 10.0 80 1.4898 0.5761 0.3548 0.5284 0.5276 0.886 0.8977 11.9 17 5 17.0786
1.1882 11.0 88 1.4787 0.5768 0.3573 0.5291 0.5288 0.8862 0.8986 11.8071 17 5 17.05
1.1649 12.0 96 1.4720 0.5784 0.3592 0.5319 0.531 0.8868 0.8988 11.7786 17 5 17.0
1.1643 13.0 104 1.4637 0.5785 0.3592 0.5314 0.5308 0.8875 0.8977 11.6571 17 3 16.8214
1.129 14.0 112 1.4565 0.5794 0.3585 0.5324 0.5315 0.8883 0.8984 11.6571 17 3 16.8
1.136 15.0 120 1.4516 0.5826 0.3598 0.537 0.5363 0.8898 0.8995 11.5857 17 3 16.6786
1.1191 16.0 128 1.4491 0.5828 0.3579 0.5357 0.535 0.8895 0.899 11.5929 17 3 16.6857
1.1192 17.0 136 1.4471 0.5794 0.355 0.5312 0.5307 0.8883 0.898 11.6143 17 3 16.7286
1.1085 18.0 144 1.4456 0.5808 0.3557 0.5315 0.5307 0.8883 0.8982 11.6286 17 3 16.7429
1.1063 19.0 152 1.4451 0.5808 0.3571 0.5321 0.5314 0.8884 0.8981 11.6 17 3 16.7143
1.0965 20.0 160 1.4449 0.581 0.3578 0.5324 0.5317 0.8885 0.8981 11.5929 17 3 16.7071

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3