Edit model card

text_shortening_model_v56

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2446
  • Rouge1: 0.3315
  • Rouge2: 0.1705
  • Rougel: 0.302
  • Rougelsum: 0.302
  • Bert precision: 0.8254
  • Bert recall: 0.8322
  • Average word count: 7.3374
  • Max word count: 18
  • Min word count: 2
  • Average token count: 11.3745
  • % shortened texts with length > 12: 4.7763

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
3.2947 1.0 288 2.7198 0.2581 0.1248 0.2329 0.2328 0.7592 0.7746 8.0751 18 0 13.4678 12.5095
2.8745 2.0 576 2.5497 0.2967 0.148 0.2692 0.269 0.8107 0.8193 7.7149 18 0 11.8552 8.3397
2.7549 3.0 864 2.4721 0.31 0.1548 0.2806 0.2805 0.8158 0.8247 7.7263 18 0 11.7786 6.975
2.6785 4.0 1152 2.4212 0.3135 0.1582 0.2834 0.2837 0.8185 0.8264 7.5815 18 0 11.6005 6.3685
2.6289 5.0 1440 2.3872 0.3188 0.1622 0.2879 0.2882 0.8196 0.8278 7.602 18 0 11.6497 6.5959
2.587 6.0 1728 2.3611 0.3224 0.1633 0.2909 0.2911 0.8202 0.8291 7.6232 18 0 11.6694 6.5959
2.5615 7.0 2016 2.3401 0.3284 0.168 0.297 0.2972 0.8222 0.8303 7.4936 18 0 11.5299 5.8378
2.5354 8.0 2304 2.3223 0.3299 0.1703 0.299 0.299 0.8228 0.831 7.5171 18 0 11.5519 5.9136
2.5074 9.0 2592 2.3069 0.3314 0.1702 0.2999 0.3 0.8237 0.832 7.5383 18 2 11.5595 5.8378
2.4868 10.0 2880 2.2944 0.3317 0.1713 0.3014 0.3013 0.8246 0.8317 7.4193 18 2 11.4519 5.5345
2.4773 11.0 3168 2.2830 0.3322 0.1705 0.3013 0.3013 0.8247 0.8319 7.3904 18 2 11.4238 5.0038
2.4571 12.0 3456 2.2738 0.3288 0.1685 0.2987 0.2987 0.8242 0.831 7.3343 18 2 11.3715 4.5489
2.4494 13.0 3744 2.2672 0.3322 0.1705 0.3013 0.3014 0.8251 0.8319 7.3351 18 2 11.3798 4.5489
2.4401 14.0 4032 2.2611 0.33 0.1692 0.3004 0.3005 0.8246 0.8315 7.3639 18 2 11.4139 4.8522
2.431 15.0 4320 2.2564 0.3303 0.1698 0.3004 0.3004 0.8248 0.8317 7.3745 18 2 11.4238 5.0796
2.4253 16.0 4608 2.2522 0.3308 0.1704 0.3016 0.3014 0.8252 0.8319 7.3328 18 2 11.3791 4.8522
2.4111 17.0 4896 2.2490 0.3313 0.1705 0.3017 0.3017 0.8254 0.8319 7.3222 18 2 11.3563 4.8522
2.4125 18.0 5184 2.2464 0.3313 0.1702 0.3017 0.3017 0.8254 0.8321 7.3328 18 2 11.3654 4.8522
2.4061 19.0 5472 2.2450 0.3313 0.1701 0.3017 0.3018 0.8254 0.8321 7.3359 18 2 11.3723 4.7763
2.4129 20.0 5760 2.2446 0.3315 0.1705 0.302 0.302 0.8254 0.8322 7.3374 18 2 11.3745 4.7763

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v56

Base model

google-t5/t5-small
Finetuned
(1510)
this model