Edit model card

text_shortening_model_v58

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7969
  • Rouge1: 0.6672
  • Rouge2: 0.4657
  • Rougel: 0.6067
  • Rougelsum: 0.6067
  • Bert precision: 0.9113
  • Bert recall: 0.9013
  • Bert f1-score: 0.9059
  • Average word count: 8.058
  • Max word count: 16
  • Min word count: 3
  • Average token count: 12.3438
  • % shortened texts with length > 12: 4.4643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.4028 1.0 49 1.9552 0.313 0.162 0.275 0.2756 0.7453 0.7745 0.7581 9.7455 18 0 16.3661 25.4464
1.1908 2.0 98 1.6121 0.2964 0.1484 0.2626 0.2629 0.7359 0.78 0.7563 9.9464 18 0 17.0268 21.875
1.0226 3.0 147 1.3961 0.4308 0.2552 0.388 0.3874 0.8166 0.8275 0.8206 9.1339 18 0 14.9375 23.6607
0.9468 4.0 196 1.2672 0.5074 0.3277 0.4695 0.4688 0.8525 0.8443 0.8474 8.3482 18 0 13.5938 15.625
0.9222 5.0 245 1.1779 0.5567 0.3752 0.5141 0.5136 0.8764 0.8648 0.8698 8.192 18 0 12.9643 12.0536
0.9229 6.0 294 1.1157 0.5911 0.4085 0.5432 0.5422 0.8855 0.8739 0.8791 8.0089 18 0 12.75 7.5893
0.8773 7.0 343 1.0715 0.6099 0.4151 0.5546 0.5537 0.8969 0.8844 0.8901 7.9464 18 0 12.5312 8.4821
0.8911 8.0 392 1.0372 0.62 0.4184 0.5617 0.5606 0.9016 0.8905 0.8956 8.1652 18 3 12.6429 8.9286
0.8681 9.0 441 1.0105 0.6275 0.4279 0.571 0.5693 0.904 0.8932 0.8981 8.2723 18 3 12.5982 9.375
0.8661 10.0 490 0.9883 0.6266 0.4226 0.5687 0.5675 0.9038 0.8931 0.898 8.317 18 3 12.6161 10.7143
0.8606 11.0 539 0.9717 0.629 0.4283 0.5717 0.5702 0.9052 0.8934 0.8988 8.1875 17 3 12.4509 8.4821
0.8701 12.0 588 0.9535 0.635 0.436 0.581 0.5799 0.9081 0.8941 0.9006 7.9062 15 3 12.183 6.25
0.8449 13.0 637 0.9394 0.6381 0.4373 0.5846 0.5831 0.9088 0.8955 0.9016 7.9196 15 3 12.1696 5.3571
0.8328 14.0 686 0.9270 0.6405 0.4455 0.5868 0.586 0.9083 0.8959 0.9016 7.9554 15 3 12.183 5.3571
0.8448 15.0 735 0.9135 0.6449 0.4548 0.594 0.5926 0.909 0.8986 0.9033 8.0625 16 3 12.3616 5.8036
0.8107 16.0 784 0.9028 0.6435 0.4484 0.5876 0.5868 0.9092 0.8979 0.9031 7.9911 15 3 12.25 4.9107
0.831 17.0 833 0.8949 0.6458 0.4525 0.59 0.5887 0.9095 0.8989 0.9037 8.0491 15 3 12.308 5.3571
0.8324 18.0 882 0.8849 0.6477 0.4495 0.5888 0.5874 0.9103 0.8989 0.9041 8.0491 15 3 12.3259 5.3571
0.8404 19.0 931 0.8783 0.6522 0.4531 0.5915 0.5906 0.9109 0.8996 0.9048 8.0938 15 3 12.3795 5.8036
0.8152 20.0 980 0.8694 0.6523 0.4545 0.5926 0.5921 0.9119 0.8996 0.9053 7.9821 15 3 12.2321 4.9107
0.802 21.0 1029 0.8654 0.6559 0.4572 0.5954 0.5951 0.9117 0.9002 0.9055 8.0223 15 3 12.2455 4.9107
0.8094 22.0 1078 0.8579 0.659 0.4557 0.5984 0.5982 0.9123 0.9012 0.9063 8.0536 15 3 12.3393 5.3571
0.7734 23.0 1127 0.8541 0.6576 0.4564 0.5971 0.597 0.9116 0.9015 0.9061 8.0848 15 3 12.3705 4.9107
0.775 24.0 1176 0.8490 0.661 0.4586 0.5999 0.5993 0.912 0.9019 0.9065 8.0759 15 3 12.3125 4.9107
0.7897 25.0 1225 0.8448 0.66 0.457 0.6007 0.5997 0.9126 0.9011 0.9064 8.0357 15 3 12.2902 4.4643
0.7817 26.0 1274 0.8409 0.6584 0.4557 0.5987 0.5982 0.9122 0.9006 0.906 7.9955 15 3 12.25 4.4643
0.7839 27.0 1323 0.8362 0.6612 0.4595 0.6015 0.601 0.9128 0.901 0.9065 7.9911 15 3 12.2545 4.4643
0.7964 28.0 1372 0.8317 0.6611 0.465 0.6048 0.604 0.9128 0.9018 0.9069 8.067 15 3 12.3393 4.4643
0.7634 29.0 1421 0.8282 0.6632 0.466 0.6052 0.6045 0.9133 0.9022 0.9074 8.0714 16 3 12.3438 4.4643
0.7939 30.0 1470 0.8250 0.6605 0.4617 0.6025 0.6019 0.913 0.9022 0.9072 8.0446 16 3 12.3482 4.9107
0.776 31.0 1519 0.8209 0.6645 0.4668 0.6073 0.6065 0.9133 0.9029 0.9077 8.0938 16 3 12.4062 5.8036
0.7511 32.0 1568 0.8192 0.6636 0.4652 0.6068 0.606 0.9128 0.9029 0.9074 8.1071 16 3 12.4152 6.25
0.7523 33.0 1617 0.8165 0.6638 0.4658 0.6067 0.6063 0.9126 0.9029 0.9073 8.1205 16 3 12.4286 6.25
0.7534 34.0 1666 0.8142 0.664 0.4684 0.6087 0.6079 0.9122 0.903 0.9072 8.1071 15 3 12.4196 6.25
0.7578 35.0 1715 0.8118 0.6621 0.4633 0.6039 0.6033 0.9117 0.9011 0.906 8.0759 15 3 12.3571 5.8036
0.7687 36.0 1764 0.8094 0.6615 0.4612 0.6035 0.6026 0.9116 0.9008 0.9058 8.0625 15 3 12.3304 5.8036
0.7423 37.0 1813 0.8075 0.6607 0.4605 0.6028 0.6022 0.9114 0.9009 0.9057 8.0714 15 3 12.3482 5.8036
0.766 38.0 1862 0.8056 0.6593 0.4591 0.6027 0.6021 0.9111 0.9008 0.9055 8.0848 15 3 12.3705 6.25
0.7422 39.0 1911 0.8044 0.6616 0.4605 0.6021 0.6014 0.9109 0.901 0.9055 8.0893 16 3 12.3795 5.8036
0.754 40.0 1960 0.8029 0.6629 0.4595 0.6016 0.6012 0.9111 0.9009 0.9055 8.0446 16 3 12.3259 5.3571
0.7326 41.0 2009 0.8017 0.6637 0.4602 0.6024 0.6018 0.911 0.9011 0.9056 8.0625 16 3 12.3482 5.3571
0.7847 42.0 2058 0.8008 0.6637 0.4602 0.6024 0.6018 0.911 0.9011 0.9056 8.0625 16 3 12.3482 5.3571
0.7426 43.0 2107 0.7997 0.664 0.4604 0.603 0.6023 0.911 0.901 0.9055 8.0536 16 3 12.3393 4.9107
0.7476 44.0 2156 0.7990 0.6666 0.4628 0.6057 0.6051 0.9115 0.9014 0.906 8.0357 16 3 12.317 4.4643
0.752 45.0 2205 0.7983 0.6666 0.4629 0.6057 0.6053 0.9116 0.9014 0.906 8.0312 16 3 12.3125 4.4643
0.7256 46.0 2254 0.7979 0.6661 0.4623 0.6049 0.6047 0.9115 0.901 0.9058 8.0089 16 3 12.2902 4.4643
0.752 47.0 2303 0.7974 0.6642 0.4623 0.6044 0.604 0.9111 0.9008 0.9055 8.0312 16 3 12.317 4.4643
0.7503 48.0 2352 0.7971 0.6672 0.4657 0.6067 0.6067 0.9113 0.9013 0.9059 8.058 16 3 12.3438 4.4643
0.7515 49.0 2401 0.7970 0.6672 0.4657 0.6067 0.6067 0.9113 0.9013 0.9059 8.058 16 3 12.3438 4.4643
0.7312 50.0 2450 0.7969 0.6672 0.4657 0.6067 0.6067 0.9113 0.9013 0.9059 8.058 16 3 12.3438 4.4643

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v58

Base model

google-t5/t5-small
Finetuned
(1510)
this model