Edit model card

text_shortening_model_v63

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9523
  • Rouge1: 0.6828
  • Rouge2: 0.4806
  • Rougel: 0.6361
  • Rougelsum: 0.6363
  • Bert precision: 0.9094
  • Bert recall: 0.9135
  • Bert f1-score: 0.9109
  • Average word count: 7.798
  • Max word count: 16
  • Min word count: 2
  • Average token count: 12.0077
  • % shortened texts with length > 12: 3.3248

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
1.8123 1.0 57 1.0664 0.6167 0.412 0.5601 0.5595 0.8975 0.8952 0.8956 7.5908 15 0 11.6752 4.0921
1.1902 2.0 114 0.9103 0.6564 0.4627 0.6141 0.6137 0.9076 0.9085 0.9074 7.4476 17 2 11.578 1.7903
1.0198 3.0 171 0.8631 0.6718 0.481 0.6327 0.6328 0.907 0.9121 0.9089 7.8363 17 2 11.9744 3.8363
0.9149 4.0 228 0.8266 0.674 0.4873 0.6365 0.6361 0.9089 0.9123 0.9101 7.6061 14 2 11.8312 2.5575
0.8256 5.0 285 0.8033 0.68 0.4876 0.643 0.6432 0.9107 0.9121 0.9109 7.5013 14 2 11.6317 2.5575
0.773 6.0 342 0.8007 0.6839 0.4923 0.6546 0.6546 0.9105 0.9141 0.9117 7.6752 16 2 11.9105 2.8133
0.7243 7.0 399 0.7875 0.6775 0.4878 0.6457 0.6465 0.9101 0.9119 0.9104 7.5831 16 2 11.711 2.3018
0.6609 8.0 456 0.7780 0.6833 0.4876 0.6432 0.6432 0.9122 0.9136 0.9124 7.5575 16 2 11.6522 2.3018
0.6402 9.0 513 0.7823 0.6872 0.4871 0.6424 0.6421 0.9107 0.9143 0.912 7.7187 16 2 11.844 3.8363
0.5944 10.0 570 0.7878 0.6795 0.4827 0.6395 0.6387 0.9082 0.913 0.91 7.7161 16 2 11.9591 3.0691
0.5638 11.0 627 0.7889 0.6802 0.4805 0.64 0.6407 0.9111 0.9124 0.9112 7.6368 16 2 11.7749 2.5575
0.5474 12.0 684 0.7987 0.6736 0.4712 0.6295 0.6293 0.9082 0.9121 0.9096 7.6471 16 2 11.8389 2.3018
0.5249 13.0 741 0.7942 0.6859 0.4823 0.6432 0.643 0.9113 0.915 0.9126 7.7545 16 2 11.9488 3.3248
0.4936 14.0 798 0.8077 0.6777 0.4786 0.6369 0.6365 0.9097 0.9122 0.9104 7.6368 16 2 11.7852 2.3018
0.4705 15.0 855 0.8099 0.6809 0.4753 0.6388 0.639 0.9088 0.9123 0.91 7.6624 16 2 11.9156 2.8133
0.4558 16.0 912 0.8154 0.6813 0.4783 0.6389 0.6398 0.9092 0.9135 0.9108 7.7775 16 2 11.9335 3.8363
0.4352 17.0 969 0.8138 0.6897 0.4911 0.6493 0.6496 0.9121 0.9151 0.9131 7.6624 16 2 11.8747 2.8133
0.421 18.0 1026 0.8274 0.6902 0.4868 0.652 0.6517 0.9114 0.9161 0.9132 7.798 16 2 12.0256 3.3248
0.4137 19.0 1083 0.8238 0.6894 0.4902 0.6491 0.6494 0.9118 0.9164 0.9136 7.798 16 2 12.0332 3.0691
0.4026 20.0 1140 0.8385 0.6846 0.4841 0.6428 0.643 0.9098 0.9147 0.9117 7.821 16 2 12.0281 4.3478
0.3866 21.0 1197 0.8393 0.6894 0.4866 0.6469 0.6472 0.9117 0.9166 0.9136 7.8107 16 2 12.0281 4.3478
0.3762 22.0 1254 0.8501 0.691 0.4882 0.6484 0.649 0.9118 0.9175 0.9141 7.8951 16 2 12.133 4.3478
0.3592 23.0 1311 0.8486 0.6906 0.4834 0.6452 0.6458 0.9119 0.9166 0.9137 7.7647 16 2 11.9821 3.3248
0.3532 24.0 1368 0.8530 0.6858 0.4825 0.6425 0.6429 0.9124 0.9157 0.9135 7.7366 16 2 11.9974 3.0691
0.3318 25.0 1425 0.8625 0.6886 0.4867 0.6486 0.6486 0.9111 0.9175 0.9138 7.8414 16 2 12.1765 3.8363
0.3427 26.0 1482 0.8727 0.6879 0.4879 0.6459 0.6464 0.9118 0.9166 0.9137 7.7852 16 2 12.0614 3.3248
0.3245 27.0 1539 0.8885 0.6845 0.4808 0.6381 0.6384 0.9107 0.9152 0.9124 7.7775 16 2 11.9463 3.0691
0.3189 28.0 1596 0.8864 0.6828 0.4769 0.6392 0.6395 0.911 0.9137 0.9119 7.7059 16 2 11.8389 2.5575
0.3069 29.0 1653 0.8970 0.6806 0.4768 0.6374 0.6378 0.91 0.9132 0.9111 7.7289 16 2 11.9437 2.8133
0.3041 30.0 1710 0.8942 0.6802 0.4743 0.6354 0.6361 0.9107 0.9128 0.9113 7.6292 16 2 11.7954 2.8133
0.302 31.0 1767 0.9005 0.6801 0.4785 0.6373 0.6376 0.9095 0.9137 0.9111 7.7698 16 2 11.9923 3.3248
0.2912 32.0 1824 0.9060 0.6806 0.4792 0.6377 0.6374 0.9096 0.913 0.9107 7.6982 16 2 11.9156 3.3248
0.2843 33.0 1881 0.9129 0.6838 0.4801 0.6395 0.6394 0.9101 0.9142 0.9116 7.757 16 2 11.9079 4.3478
0.2833 34.0 1938 0.9175 0.6861 0.4846 0.6408 0.6413 0.9106 0.9142 0.9118 7.7494 16 2 11.9309 3.8363
0.2751 35.0 1995 0.9189 0.6886 0.4831 0.6442 0.6447 0.9121 0.9149 0.913 7.665 16 2 11.9028 2.5575
0.2713 36.0 2052 0.9234 0.6868 0.4882 0.6439 0.6437 0.9114 0.9155 0.9129 7.7903 16 2 12.023 2.8133
0.2587 37.0 2109 0.9345 0.6813 0.4829 0.6387 0.638 0.9102 0.914 0.9115 7.7673 16 2 11.9514 3.5806
0.2646 38.0 2166 0.9315 0.6841 0.4829 0.6387 0.6386 0.9106 0.9135 0.9115 7.7161 16 2 11.9182 3.5806
0.2583 39.0 2223 0.9359 0.6833 0.4799 0.6375 0.6379 0.9104 0.9137 0.9115 7.757 16 2 11.9591 2.5575
0.2518 40.0 2280 0.9392 0.6877 0.4851 0.6395 0.6403 0.9107 0.9141 0.9118 7.798 16 2 12.0051 3.3248
0.2453 41.0 2337 0.9420 0.6885 0.4835 0.6405 0.6412 0.9109 0.9141 0.912 7.7494 16 2 11.954 3.5806
0.251 42.0 2394 0.9427 0.6852 0.4798 0.636 0.6367 0.9108 0.9136 0.9116 7.7647 16 2 11.9488 3.5806
0.2495 43.0 2451 0.9445 0.6821 0.4792 0.6342 0.6351 0.9099 0.913 0.9109 7.7596 16 2 11.9565 3.5806
0.248 44.0 2508 0.9448 0.681 0.4782 0.6336 0.6342 0.9091 0.9132 0.9106 7.7928 16 2 12.0179 3.3248
0.2516 45.0 2565 0.9472 0.6839 0.4852 0.6387 0.6388 0.91 0.914 0.9114 7.8465 16 2 12.0537 3.8363
0.2475 46.0 2622 0.9523 0.6812 0.4814 0.6357 0.6361 0.909 0.9137 0.9108 7.867 16 2 12.0972 3.8363
0.241 47.0 2679 0.9518 0.6801 0.4809 0.6337 0.6338 0.909 0.9132 0.9106 7.8286 16 2 12.046 3.8363
0.2386 48.0 2736 0.9519 0.6801 0.4783 0.633 0.6332 0.9084 0.9129 0.9101 7.8363 16 2 12.0537 4.0921
0.2398 49.0 2793 0.9521 0.6816 0.48 0.6349 0.635 0.9093 0.9132 0.9107 7.7775 16 2 11.9847 3.3248
0.2323 50.0 2850 0.9523 0.6828 0.4806 0.6361 0.6363 0.9094 0.9135 0.9109 7.798 16 2 12.0077 3.3248

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v63

Base model

google-t5/t5-small
Finetuned
(1510)
this model