ldos's picture
End of training
66d1ac9
metadata
license: apache-2.0
base_model: t5-small
tags:
  - generated_from_trainer
model-index:
  - name: text_shortening_model_v68
    results: []

text_shortening_model_v68

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1011
  • Bert precision: 0.8904
  • Bert recall: 0.8919
  • Bert f1-score: 0.8906
  • Average word count: 6.7117
  • Max word count: 18
  • Min word count: 2
  • Average token count: 10.7497
  • % shortened texts with length > 12: 2.002

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.3576 1.0 37 1.6358 0.847 0.8396 0.8424 6.3233 16 0 10.7958 6.3063
1.7631 2.0 74 1.4404 0.8739 0.8715 0.8721 6.5666 16 0 10.4695 2.3023
1.5884 3.0 111 1.3492 0.8807 0.8787 0.8791 6.6006 16 2 10.3904 2.002
1.5068 4.0 148 1.2953 0.8829 0.881 0.8813 6.6006 16 2 10.4194 1.7017
1.4361 5.0 185 1.2638 0.8847 0.8836 0.8836 6.6547 16 2 10.4965 1.3013
1.3844 6.0 222 1.2357 0.8851 0.8846 0.8843 6.6747 16 2 10.5105 1.9019
1.351 7.0 259 1.2146 0.8832 0.8858 0.8839 6.8649 16 2 10.7628 2.3023
1.2944 8.0 296 1.2008 0.8848 0.8867 0.8852 6.7728 15 2 10.7047 2.1021
1.2785 9.0 333 1.1889 0.8856 0.8872 0.8858 6.7538 16 2 10.6987 1.8018
1.2469 10.0 370 1.1774 0.8851 0.8868 0.8854 6.7247 15 2 10.6627 2.1021
1.2206 11.0 407 1.1674 0.886 0.8882 0.8865 6.7558 16 2 10.7477 1.9019
1.1955 12.0 444 1.1614 0.8851 0.8875 0.8858 6.7748 15 2 10.7848 1.9019
1.1707 13.0 481 1.1516 0.8854 0.8879 0.8861 6.7698 15 2 10.7908 2.002
1.1455 14.0 518 1.1470 0.8871 0.8882 0.8872 6.6817 17 1 10.6867 1.9019
1.1392 15.0 555 1.1384 0.8861 0.8889 0.887 6.7658 17 1 10.8008 1.8018
1.1212 16.0 592 1.1351 0.8876 0.8902 0.8883 6.7528 17 1 10.8078 2.002
1.0965 17.0 629 1.1316 0.8861 0.8893 0.8872 6.7918 17 1 10.8639 2.3023
1.1 18.0 666 1.1269 0.8869 0.8901 0.8879 6.8218 17 2 10.8809 2.2022
1.0679 19.0 703 1.1220 0.8867 0.8889 0.8873 6.7157 17 1 10.7658 1.5015
1.0708 20.0 740 1.1209 0.8865 0.8889 0.8872 6.7618 17 1 10.7898 1.8018
1.0444 21.0 777 1.1178 0.8872 0.8892 0.8877 6.7047 17 2 10.7598 1.8018
1.0347 22.0 814 1.1161 0.8882 0.8902 0.8887 6.7167 17 2 10.7568 1.6016
1.0212 23.0 851 1.1147 0.8883 0.89 0.8886 6.7017 17 2 10.7467 1.8018
1.0264 24.0 888 1.1113 0.8879 0.8899 0.8884 6.6987 17 2 10.7397 1.8018
1.0186 25.0 925 1.1099 0.8876 0.8893 0.8879 6.6997 17 2 10.7417 1.7017
1.0124 26.0 962 1.1102 0.8882 0.8903 0.8888 6.7277 17 2 10.7718 2.1021
1.0081 27.0 999 1.1082 0.8889 0.8901 0.889 6.6687 17 2 10.6877 1.7017
1.0107 28.0 1036 1.1044 0.8893 0.8906 0.8894 6.6567 17 2 10.6807 1.7017
0.9788 29.0 1073 1.1060 0.8891 0.8905 0.8893 6.6817 18 2 10.7137 2.002
0.9899 30.0 1110 1.1052 0.8894 0.8915 0.8899 6.7357 18 2 10.7598 2.2022
0.9736 31.0 1147 1.1050 0.8896 0.8915 0.8901 6.7027 18 2 10.7367 2.002
0.9779 32.0 1184 1.1051 0.8899 0.892 0.8905 6.7237 18 2 10.7618 2.1021
0.9704 33.0 1221 1.1033 0.89 0.8914 0.8902 6.6877 18 2 10.7117 1.8018
0.9711 34.0 1258 1.1021 0.8894 0.8912 0.8898 6.7027 18 2 10.7327 1.8018
0.9637 35.0 1295 1.1019 0.89 0.8913 0.8901 6.6907 18 2 10.7217 1.9019
0.9525 36.0 1332 1.1016 0.8901 0.8915 0.8903 6.6997 18 2 10.7177 1.9019
0.9668 37.0 1369 1.1009 0.8902 0.8918 0.8905 6.7127 18 2 10.7497 2.002
0.9704 38.0 1406 1.1013 0.8904 0.8921 0.8908 6.7187 18 2 10.7528 2.1021
0.9531 39.0 1443 1.1010 0.8904 0.8919 0.8906 6.7117 18 2 10.7497 2.002
0.958 40.0 1480 1.1011 0.8904 0.8919 0.8906 6.7117 18 2 10.7497 2.002

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3