Edit model card

text_shortening_model_v70

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1285
  • Bert precision: 0.8931
  • Bert recall: 0.8981
  • Bert f1-score: 0.8951
  • Average word count: 6.5696
  • Max word count: 16
  • Min word count: 2
  • Average token count: 10.6276
  • % shortened texts with length > 12: 1.8018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Bert precision Bert recall Bert f1-score Average word count Max word count Min word count Average token count % shortened texts with length > 12
2.1122 1.0 37 1.5033 0.8698 0.8713 0.87 6.6056 16 0 10.4705 3.003
1.5423 2.0 74 1.3536 0.8779 0.8809 0.8788 6.6286 16 2 10.5696 1.8018
1.4111 3.0 111 1.2926 0.8805 0.8849 0.8821 6.6446 16 2 10.5586 2.002
1.3269 4.0 148 1.2394 0.8852 0.8889 0.8865 6.5636 15 2 10.5175 1.4014
1.2566 5.0 185 1.2094 0.884 0.8889 0.8859 6.6787 16 2 10.6226 2.2022
1.1991 6.0 222 1.1820 0.8848 0.8899 0.8868 6.6747 16 2 10.6266 2.3023
1.1567 7.0 259 1.1627 0.8849 0.8916 0.8878 6.7908 16 2 10.7067 2.002
1.1126 8.0 296 1.1560 0.8866 0.8936 0.8896 6.7638 16 2 10.7598 2.1021
1.0722 9.0 333 1.1501 0.889 0.8944 0.8912 6.6807 16 2 10.6456 2.1021
1.0455 10.0 370 1.1384 0.8876 0.8946 0.8906 6.7117 16 2 10.7317 2.002
1.0111 11.0 407 1.1220 0.8907 0.8951 0.8924 6.5706 16 2 10.5425 1.5015
0.9804 12.0 444 1.1243 0.8912 0.8963 0.8933 6.5766 16 2 10.5836 1.6016
0.9509 13.0 481 1.1256 0.8898 0.8959 0.8924 6.6226 16 2 10.6366 1.9019
0.9295 14.0 518 1.1206 0.8896 0.8972 0.8929 6.7287 16 2 10.7788 2.3023
0.9137 15.0 555 1.1172 0.8917 0.895 0.8929 6.5175 16 2 10.4885 1.7017
0.9016 16.0 592 1.1218 0.8902 0.8978 0.8935 6.7237 16 2 10.7608 1.9019
0.8654 17.0 629 1.1171 0.8913 0.8966 0.8934 6.5946 16 2 10.6166 2.002
0.8562 18.0 666 1.1194 0.8916 0.8973 0.8939 6.6186 16 2 10.6607 2.002
0.8337 19.0 703 1.1235 0.8921 0.8989 0.895 6.7027 16 2 10.7658 1.8018
0.8323 20.0 740 1.1153 0.8914 0.8977 0.8941 6.6607 16 2 10.6917 1.8018
0.8146 21.0 777 1.1142 0.8929 0.8966 0.8943 6.5315 16 2 10.5536 1.7017
0.8053 22.0 814 1.1211 0.8923 0.8983 0.8948 6.6747 16 2 10.7407 2.1021
0.7858 23.0 851 1.1164 0.8928 0.8969 0.8944 6.5355 16 2 10.5706 1.6016
0.7795 24.0 888 1.1157 0.8942 0.8983 0.8958 6.5556 16 2 10.6016 1.7017
0.7603 25.0 925 1.1231 0.8935 0.8984 0.8955 6.5826 16 2 10.6486 1.7017
0.7709 26.0 962 1.1231 0.8932 0.8979 0.8951 6.6006 16 2 10.6396 2.002
0.7528 27.0 999 1.1217 0.8929 0.8973 0.8946 6.5506 16 2 10.5876 1.9019
0.7436 28.0 1036 1.1222 0.8933 0.8991 0.8957 6.5696 16 2 10.6587 2.002
0.7406 29.0 1073 1.1284 0.8928 0.898 0.8949 6.5636 16 2 10.6406 1.9019
0.7326 30.0 1110 1.1278 0.8932 0.8988 0.8956 6.6216 16 2 10.6977 1.9019
0.7253 31.0 1147 1.1273 0.893 0.8986 0.8953 6.5856 16 2 10.6537 1.7017
0.7245 32.0 1184 1.1274 0.8935 0.8985 0.8955 6.5586 16 2 10.6216 1.7017
0.7082 33.0 1221 1.1281 0.8935 0.8987 0.8956 6.5826 16 2 10.6597 1.8018
0.7011 34.0 1258 1.1265 0.8936 0.8985 0.8956 6.5696 16 2 10.6517 1.8018
0.7099 35.0 1295 1.1284 0.8935 0.8987 0.8956 6.5656 16 2 10.6396 1.6016
0.7064 36.0 1332 1.1281 0.8939 0.8992 0.896 6.5696 16 2 10.6476 1.8018
0.7045 37.0 1369 1.1286 0.8932 0.8978 0.895 6.5556 16 2 10.5976 1.8018
0.702 38.0 1406 1.1275 0.8934 0.8984 0.8954 6.5776 16 2 10.6296 1.8018
0.6952 39.0 1443 1.1284 0.8933 0.8981 0.8952 6.5586 16 2 10.6146 1.8018
0.6928 40.0 1480 1.1285 0.8931 0.8981 0.8951 6.5696 16 2 10.6276 1.8018

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v70

Base model

google-t5/t5-small
Finetuned
(1509)
this model