Edit model card

text_shortening_model_v8

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3248
  • Rouge1: 0.43
  • Rouge2: 0.2172
  • Rougel: 0.3684
  • Rougelsum: 0.3674
  • Bert precision: 0.8551
  • Bert recall: 0.8369
  • Average word count: 9.8214
  • Max word count: 17
  • Min word count: 5
  • Average token count: 15.5857
  • % shortened texts with length > 12: 17.1429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bert precision Bert recall Average word count Max word count Min word count Average token count % shortened texts with length > 12
0.2688 1.0 8 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.284 2.0 16 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.264 3.0 24 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2564 4.0 32 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2727 5.0 40 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2924 6.0 48 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2666 7.0 56 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2662 8.0 64 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2631 9.0 72 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2844 10.0 80 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2653 11.0 88 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2649 12.0 96 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2972 13.0 104 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2553 14.0 112 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.261 15.0 120 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2832 16.0 128 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2635 17.0 136 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2484 18.0 144 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2612 19.0 152 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2996 20.0 160 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2562 21.0 168 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2503 22.0 176 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2763 23.0 184 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2692 24.0 192 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.284 25.0 200 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2838 26.0 208 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2729 27.0 216 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2685 28.0 224 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2599 29.0 232 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2829 30.0 240 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2275 31.0 248 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2605 32.0 256 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2855 33.0 264 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.251 34.0 272 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2629 35.0 280 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2679 36.0 288 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2453 37.0 296 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2853 38.0 304 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2542 39.0 312 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2627 40.0 320 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2668 41.0 328 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2742 42.0 336 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2746 43.0 344 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2768 44.0 352 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2729 45.0 360 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2729 46.0 368 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2788 47.0 376 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.286 48.0 384 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2484 49.0 392 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429
0.2679 50.0 400 2.3248 0.43 0.2172 0.3684 0.3674 0.8551 0.8369 9.8214 17 5 15.5857 17.1429

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ldos/text_shortening_model_v8

Base model

google-t5/t5-small
Finetuned
(1509)
this model