See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-1.5B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 32d61cd80543afbd_train_data.json
ds_type: json
field: question
path: /workspace/input_data/32d61cd80543afbd_train_data.json
type: completion
debug:
deepspeed:
early_stopping_patience:
eval_max_new_tokens: 128
eval_table_size:
evals_per_epoch: 4
flash_attention: false
fp16:
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: leixa/07a1ff69-755e-4877-b0db-73b64d8cacb2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank:
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out:
lora_model_dir:
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/32d61cd80543afbd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention:
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 07a1ff69-755e-4877-b0db-73b64d8cacb2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 07a1ff69-755e-4877-b0db-73b64d8cacb2
warmup_steps: 10
weight_decay: 0.01
xformers_attention:
07a1ff69-755e-4877-b0db-73b64d8cacb2
This model is a fine-tuned version of unsloth/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | nan |
0.0 | 0.0040 | 125 | nan |
0.0 | 0.0081 | 250 | nan |
0.0 | 0.0121 | 375 | nan |
0.0 | 0.0162 | 500 | nan |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for leixa/07a1ff69-755e-4877-b0db-73b64d8cacb2
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-1.5B-Instruct