See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: peft-internal-testing/tiny-dummy-qwen2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 61efda3b9d48575c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/61efda3b9d48575c_train_data.json
type:
field_instruction: question
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/1f650840-d05a-4cc6-803e-baf7d0cf7ee1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/61efda3b9d48575c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 1f650840-d05a-4cc6-803e-baf7d0cf7ee1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1f650840-d05a-4cc6-803e-baf7d0cf7ee1
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
1f650840-d05a-4cc6-803e-baf7d0cf7ee1
This model is a fine-tuned version of peft-internal-testing/tiny-dummy-qwen2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.9118
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0050 | 1 | 11.9327 |
11.9245 | 0.2082 | 42 | 11.9231 |
11.9213 | 0.4164 | 84 | 11.9204 |
11.9202 | 0.6245 | 126 | 11.9191 |
11.9179 | 0.8327 | 168 | 11.9170 |
12.2734 | 1.0409 | 210 | 11.9150 |
11.8481 | 1.2491 | 252 | 11.9136 |
12.0345 | 1.4572 | 294 | 11.9128 |
11.6038 | 1.6654 | 336 | 11.9122 |
11.7007 | 1.8736 | 378 | 11.9119 |
11.2393 | 2.0818 | 420 | 11.9118 |
12.3732 | 2.2900 | 462 | 11.9118 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 14
Model tree for leixa/1f650840-d05a-4cc6-803e-baf7d0cf7ee1
Base model
peft-internal-testing/tiny-dummy-qwen2