Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: defog/llama-3-sqlcoder-8b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9a795b17b199f7fe_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9a795b17b199f7fe_train_data.json
  type:
    field_instruction: text
    field_output: label
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: leixa/ff810066-31fd-4436-a2c4-296c7f507694
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/9a795b17b199f7fe_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: ff810066-31fd-4436-a2c4-296c7f507694
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff810066-31fd-4436-a2c4-296c7f507694
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

ff810066-31fd-4436-a2c4-296c7f507694

This model is a fine-tuned version of defog/llama-3-sqlcoder-8b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0775

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 393

Training results

Training Loss Epoch Step Validation Loss
No log 0.0076 1 16.8733
0.2599 0.2519 33 0.1527
0.0761 0.5038 66 0.1225
0.1768 0.7557 99 0.1619
0.0645 1.0076 132 0.1234
0.0688 1.2595 165 0.1283
0.0478 1.5115 198 0.1044
0.0468 1.7634 231 0.0829
0.0539 2.0153 264 0.0769
0.0326 2.2672 297 0.0764
0.0971 2.5191 330 0.0781
0.0526 2.7710 363 0.0775

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
18
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for leixa/ff810066-31fd-4436-a2c4-296c7f507694

Adapter
(82)
this model