See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: DeepMount00/Llama-3-8b-Ita
bf16: true
chat_template: llama3
datasets:
- data_files:
- 2db76e6fdf792dae_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2db76e6fdf792dae_train_data.json
type:
field_input: text
field_instruction: poem
field_output: poet
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso02/0398c169-3e39-4e2b-9a9e-c09d22e7b583
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 1.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 30
micro_batch_size: 4
mlflow_experiment_name: /tmp/2db76e6fdf792dae_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 0398c169-3e39-4e2b-9a9e-c09d22e7b583
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0398c169-3e39-4e2b-9a9e-c09d22e7b583
warmup_steps: 5
weight_decay: 0.01
xformers_attention: false
0398c169-3e39-4e2b-9a9e-c09d22e7b583
This model is a fine-tuned version of DeepMount00/Llama-3-8b-Ita on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.8881
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
8.409 | 0.0001 | 1 | 7.9600 |
7.5361 | 0.0003 | 4 | 7.9469 |
7.2974 | 0.0006 | 8 | 7.8295 |
7.4862 | 0.0009 | 12 | 7.6021 |
7.9965 | 0.0011 | 16 | 7.3008 |
7.5826 | 0.0014 | 20 | 7.0639 |
7.6529 | 0.0017 | 24 | 6.9416 |
5.7908 | 0.0020 | 28 | 6.8881 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10