See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: true
chat_template: llama3
datasets:
- data_files:
- 3f664c4b97a3a0af_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3f664c4b97a3a0af_train_data.json
type:
field_input: text
field_instruction: situation
field_output: summary
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso08/cc51d00b-d982-4127-a32b-bfb8014c47d2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 8
mlflow_experiment_name: /tmp/3f664c4b97a3a0af_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: cc51d00b-d982-4127-a32b-bfb8014c47d2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cc51d00b-d982-4127-a32b-bfb8014c47d2
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
cc51d00b-d982-4127-a32b-bfb8014c47d2
This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf-flash on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1025
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7793 | 0.0002 | 1 | 0.7040 |
0.7923 | 0.0006 | 4 | 0.6930 |
1.0183 | 0.0012 | 8 | 0.5220 |
0.4621 | 0.0018 | 12 | 0.2800 |
0.5093 | 0.0025 | 16 | 0.1575 |
0.2883 | 0.0031 | 20 | 0.1098 |
0.151 | 0.0037 | 24 | 0.1025 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Model tree for lesso08/cc51d00b-d982-4127-a32b-bfb8014c47d2
Base model
NousResearch/CodeLlama-13b-hf-flash