File size: 5,145 Bytes
47ae6a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
license: apache-2.0
---
# π¦ Melanoma Detection Model
## π Overview
π€ **Model Name:** Melanoma Detection Model
π§ **Model Type:** Convolutional Neural Network (CNN)
π **Input:** 224x224 RGB images of skin lesions
π’ **Output:** A binary classification (Melanoma or Not Melanoma)
π― **Purpose:** To identify and classify skin lesions as melanoma or non-melanoma with high accuracy
βοΈ **Download:** Click [here](https://example.com/melanoma_detection_model/download) to download
---
## π Description
This model is designed to detect melanoma from skin lesion images. It processes input images of size 224x224 pixels and outputs a binary classification indicating whether the lesion is melanoma or not. The model is trained to differentiate between malignant melanoma and benign conditions.
---
## π Use Cases
1. **Medical Diagnosis:** π₯ Assisting dermatologists in diagnosing melanoma from images.
2. **Skin Cancer Screening:** π©Ί Enhancing early detection efforts in large-scale skin cancer screening programs.
3. **Patient Monitoring:** π©ββοΈ Helping in monitoring patients with a history of melanoma or high risk.
---
## π Performance
π **Accuracy:** ~99% on the [Skin Cancer Dataset](https://www.kaggle.com/datasets/shashanks1202/skin-cancer-dataset)
π **Latency:** Suitable for real-time analysis in clinical settings.
---
## π οΈ Technical Details
- **Based on:** [MobileNetV2](https://www.kaggle.com/models/google/mobilenet-v2)
- **Architecture:** Convolutional Neural Network (CNN)
- **Layers:** Convolutional layers, pooling layers, fully connected layers
- **Activation Functions:** ReLU, Sigmoid
---
## π₯ Input Format
- **Type:** RGB image
- **Shape:** 224x224 pixels
- **Range:** 0-1 (pixel intensity)
---
## π€ Output Format
- **Type:** Binary classification
- **Shape:** Scalar value
- **Range:** 0 (Not Melanoma), 1 (Melanoma)
---
## 𧩠Model Training
- **Dataset:** [Skin Cancer Dataset](https://www.kaggle.com/datasets/shashanks1202/skin-cancer-dataset) π
- **First step:**
- **Training Epochs:** 50
- **Batch Size:** 32
- **Optimizer:** Adam
- **Learning rate:** 1e-5
- **Layers:** Only last layer
- **Second step:**
- **Training Epochs:** 5
- **Batch Size:** 32
- **Optimizer:** Adam
- **Learning rate:** 1e-5
- **Layers:** All layers
---
## π‘ How to Use
1. **Preprocess the Image:** Resize and normalize the image to 224x224 pixels with pixel values between 0 and 1.
2. **Feed the Image:** Input the preprocessed image into the model.
3. **Interpret the Output:** Analyze the output to determine if the lesion is melanoma or not.
### Loading the Model
To use the model, first, load it using your preferred framework.
```python
import tensorflow as tf
# Load the pre-trained model
model = tf.keras.models.load_model('path/to/Melanoma-003.keras')
```
### Preprocessing the Input
Preprocess the input image to fit the model's requirements.
```python
import numpy as np
from tensorflow.keras.preprocessing import image
def preprocess_image(img_path):
# Load the image
img = image.load_img(img_path, target_size=(224, 224))
# Convert to numpy array
img_array = image.img_to_array(img)
# Normalize the image
img_array = img_array / 255.0
# Reshape to add batch dimension
img_array = np.expand_dims(img_array, axis=0)
return img_array
# Example usage
img_path = 'path/to/your/image.jpg'
processed_image = preprocess_image(img_path)
```
### Making Predictions
Use the model to predict if the lesion is melanoma.
```python
# Predict the class
prediction = model.predict(processed_image)
# Interpret the result
if prediction[0] > 0.5:
print('The lesion is classified as Melanoma.')
else:
print('The lesion is classified as Not Melanoma.')
```
### Full Example
Combining all steps into a single example.
```python
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
# Load the pre-trained model
model = tf.keras.models.load_model('path/to/MelanomaDetectionModel.h5')
def preprocess_image(img_path):
img = image.load_img(img_path, target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = img_array / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
img_path = 'path/to/your/image.jpg'
processed_image = preprocess_image(img_path)
prediction = model.predict(processed_image)
if prediction[0] > 0.5:
print('The lesion is classified as Melanoma.')
else:
print('The lesion is classified as Not Melanoma.')
```
---
## β οΈ Limitations
- **Image Quality:** Performance may be affected by poor-quality or low-resolution images.
- **Generalization:** Model performance may vary with images not represented in the training data.
---
## π₯ Contributors
- **Developer:** Lizardwine (x@lizardwine.com)
- **Organization:** lizardwine
- **Date:** 05/09/2024
---
## π References
- Skin Cancer Dataset: [Link](https://www.kaggle.com/datasets/shashanks1202/skin-cancer-dataset)
- MobileNetV2: [Link](https://www.kaggle.com/models/google/mobilenet-v2)
--- |