Edit model card

llama381binstruct_summarize_short

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4158

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
1.6861 1.1905 25 0.9223
0.7859 2.3810 50 0.8779
0.3887 3.5714 75 0.9867
0.1412 4.7619 100 1.0822
0.0911 5.9524 125 1.2118
0.0391 7.1429 150 1.3553
0.0309 8.3333 175 1.2825
0.0188 9.5238 200 1.2512
0.0145 10.7143 225 1.2936
0.0091 11.9048 250 1.3109
0.0058 13.0952 275 1.2768
0.0042 14.2857 300 1.2963
0.0032 15.4762 325 1.3539
0.0021 16.6667 350 1.3810
0.0024 17.8571 375 1.3974
0.0021 19.0476 400 1.4047
0.002 20.2381 425 1.4103
0.0018 21.4286 450 1.4133
0.0017 22.6190 475 1.4152
0.0015 23.8095 500 1.4158

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.1
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for llm-wizard/llama381binstruct_summarize_short

Adapter
(70)
this model