BigWeave Viable
Collection
All viable models from the BigWeave series, excluding quantized versions
•
7 items
•
Updated
The BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.
Mistral, Vicuna and Alpaca.
This is a self-merge of 152334H/miqu-1-70b-sf. By conducting exl2 measurements, we identify the most relevant layers. These layers are then duplicated in pairs to ensure overlaps.
Merge configuration:
slices:
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [0,3]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [1,5]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [3,7]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [5,9]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [7,18]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [16,21]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [19,27]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [25,30]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [28,32]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [30,34]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [32,36]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [34,38]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [36,40]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [38,42]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [40,44]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [42,46]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [44,48]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [46,51]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [49,77]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [75,79]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [77,80]
merge_method: passthrough
dtype: float16
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.67 |
AI2 Reasoning Challenge (25-Shot) | 69.71 |
HellaSwag (10-Shot) | 86.41 |
MMLU (5-Shot) | 71.25 |
TruthfulQA (0-shot) | 66.10 |
Winogrande (5-shot) | 80.35 |
GSM8k (5-shot) | 56.18 |