BigWeave Viable
Collection
All viable models from the BigWeave series, excluding quantized versions
•
7 items
•
Updated
The BigWeave models aim to experimentally identify merge settings for increasing model performance. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared.
Mistral, Vicuna and Alpaca.
This is a self-merge of 152334H/miqu-1-70b-sf. By conducting exl2 measurements, we identify the most relevant layers. The layers are duplicated such that each group consists of consecutive layers with a two-layer overlap (i.e. larger groups than in v15).
Merge configuration:
slices:
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [0,11]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [9,13]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [11,15]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [13,17]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [15,23]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [21,25]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [23,49]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [47,51]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [49,53]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [51,55]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [53,57]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [55,59]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [57,61]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [59,63]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [61,65]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [63,67]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [65,69]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [67,71]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [69,73]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [71,75]
- sources:
- model: 152334H/miqu-1-70b-sf
layer_range: [73,80]
merge_method: passthrough
dtype: float16
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.02 |
AI2 Reasoning Challenge (25-Shot) | 65.87 |
HellaSwag (10-Shot) | 87.61 |
MMLU (5-Shot) | 73.22 |
TruthfulQA (0-shot) | 63.81 |
Winogrande (5-shot) | 80.43 |
GSM8k (5-shot) | 61.18 |