mt5-base-koquad-qag / README.md
asahi417's picture
model update
0187019
|
raw
history blame
5.82 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: ko
datasets:
  - lmqg/qag_koquad
pipeline_tag: text2text-generation
tags:
  - questions and answers generation
widget:
  - text: >-
      1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해
      MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.
    example_title: Questions & Answers Generation Example 1
model-index:
  - name: lmqg/mt5-base-koquad-qag
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qag_koquad
          type: default
          args: default
        metrics:
          - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
            type: qa_aligned_f1_score_bertscore_question_answer_generation
            value: 76.88
          - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
            type: qa_aligned_recall_bertscore_question_answer_generation
            value: 76.69
          - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
            type: qa_aligned_precision_bertscore_question_answer_generation
            value: 77.1
          - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
            type: qa_aligned_f1_score_moverscore_question_answer_generation
            value: 77.95
          - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
            type: qa_aligned_recall_moverscore_question_answer_generation
            value: 77.66
          - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
            type: qa_aligned_precision_moverscore_question_answer_generation
            value: 78.29

Model Card of lmqg/mt5-base-koquad-qag

This model is fine-tuned version of google/mt5-base for question & answer pair generation task on the lmqg/qag_koquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="ko", model="lmqg/mt5-base-koquad-qag")

# model prediction
question_answer_pairs = model.generate_qa("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-koquad-qag")
output = pipe("1990년 영화 《 남부군 》에서 단역으로 영화배우 첫 데뷔에 이어 같은 해 KBS 드라마 《지구인》에서 단역으로 출연하였고 이듬해 MBC 《여명의 눈동자》를 통해 단역으로 출연하였다.")

Evaluation

Score Type Dataset
QAAlignedF1Score (BERTScore) 76.88 default lmqg/qag_koquad
QAAlignedF1Score (MoverScore) 77.95 default lmqg/qag_koquad
QAAlignedPrecision (BERTScore) 77.1 default lmqg/qag_koquad
QAAlignedPrecision (MoverScore) 78.29 default lmqg/qag_koquad
QAAlignedRecall (BERTScore) 76.69 default lmqg/qag_koquad
QAAlignedRecall (MoverScore) 77.66 default lmqg/qag_koquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_koquad
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: None
  • model: google/mt5-base
  • max_length: 512
  • max_length_output: 256
  • epoch: 18
  • batch: 2
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 64
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}