File size: 10,179 Bytes
136bd6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b20a0
136bd6a
75b20a0
136bd6a
75b20a0
136bd6a
 
b1e741c
136bd6a
 
 
 
 
 
 
 
 
f3eb742
 
27a0846
f3eb742
 
27a0846
f3eb742
 
27a0846
f3eb742
 
27a0846
f3eb742
 
27a0846
ba789b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f005410
 
ba789b0
f005410
 
ba789b0
f005410
 
ba789b0
f005410
 
ba789b0
f005410
 
ba789b0
f005410
 
ba789b0
136bd6a
 
b1e741c
27a0846
136bd6a
 
 
 
 
 
 
 
ff7105a
136bd6a
 
ff7105a
136bd6a
ff7105a
27a0846
ff7105a
b1e741c
27a0846
ff7105a
27a0846
ff7105a
 
136bd6a
ff7105a
 
 
27a0846
b1e741c
27a0846
b6d76f2
136bd6a
 
27a0846
136bd6a
 
b1e741c
136bd6a
27a0846
 
 
 
 
 
 
 
 
 
136bd6a
 
ba789b0
cab71ae
27a0846
 
 
 
 
 
 
 
cab71ae
136bd6a
ba789b0
 
 
 
 
 
 
 
 
 
 
 
136bd6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e741c
136bd6a
 
ff7105a
b6d76f2
ff7105a
b6d76f2
ff7105a
b6d76f2
 
 
 
 
 
 
 
ff7105a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: es
datasets:
- lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India."
  example_title: "Question Generation Example 1" 
- text: "a <hl> noviembre <hl> , que es también la estación lluviosa."
  example_title: "Question Generation Example 2" 
- text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/mt5-small-esquad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_esquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 9.61
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 24.62
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 22.71
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 84.07
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 59.06
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 89.43
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 89.41
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 89.44
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 63.73
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 63.72
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 63.75
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
      value: 79.89
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
      value: 82.56
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
      value: 77.46
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
      value: 54.82
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
      value: 56.52
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
      value: 53.31
---

# Model Card of `lmqg/mt5-small-esquad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)   
- **Language:** es  
- **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   84.07 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_1     |   26.03 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_2     |   17.75 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_3     |   12.88 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_4     |    9.61 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| METEOR     |   22.71 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| MoverScore |   59.06 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| ROUGE_L    |   24.62 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |


- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   89.43 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedF1Score (MoverScore)   |   63.73 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (BERTScore)  |   89.44 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (MoverScore) |   63.75 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (BERTScore)     |   89.41 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (MoverScore)    |   63.72 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |


- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mt5-small-esquad-ae`](https://huggingface.co/lmqg/mt5-small-esquad-ae). [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.lmqg_mt5-small-esquad-ae.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   79.89 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedF1Score (MoverScore)   |   54.82 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (BERTScore)  |   77.46 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (MoverScore) |   53.31 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (BERTScore)     |   82.56 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (MoverScore)    |   56.52 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_esquad
 - dataset_name: default
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: google/mt5-small
 - max_length: 512
 - max_length_output: 32
 - epoch: 16
 - batch: 64
 - lr: 0.0005
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 1
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```