mt5-small-esquad-qg / README.md
asahi417's picture
model update
ba789b0
|
raw
history blame
13.5 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: es
datasets:
  - lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.
    example_title: Question Generation Example 1
  - text: a <hl> noviembre <hl> , que es también la estación lluviosa.
    example_title: Question Generation Example 2
  - text: >-
      como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de
      septiembre de 2013.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-small-esquad-qg
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_esquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 9.61
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 24.62
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 22.71
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 84.07
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 59.06
          - name: BLEU4 (Question & Answer Generation (with Gold Answer))
            type: bleu4_question_answer_generation_with_gold_answer
            value: 12.77
          - name: ROUGE-L (Question & Answer Generation (with Gold Answer))
            type: rouge_l_question_answer_generation_with_gold_answer
            value: 42.77
          - name: METEOR (Question & Answer Generation (with Gold Answer))
            type: meteor_question_answer_generation_with_gold_answer
            value: 37.58
          - name: BERTScore (Question & Answer Generation (with Gold Answer))
            type: bertscore_question_answer_generation_with_gold_answer
            value: 89.41
          - name: MoverScore (Question & Answer Generation (with Gold Answer))
            type: moverscore_question_answer_generation_with_gold_answer
            value: 63.56
          - name: >-
              QAAlignedF1Score-BERTScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
            value: 89.43
          - name: >-
              QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold
              Answer)) [Gold Answer]
            type: >-
              qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
            value: 89.41
          - name: >-
              QAAlignedPrecision-BERTScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
            value: 89.44
          - name: >-
              QAAlignedF1Score-MoverScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
            value: 63.73
          - name: >-
              QAAlignedRecall-MoverScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
            value: 63.72
          - name: >-
              QAAlignedPrecision-MoverScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
            value: 63.75
          - name: BLEU4 (Question & Answer Generation)
            type: bleu4_question_answer_generation
            value: 1.83
          - name: ROUGE-L (Question & Answer Generation)
            type: rouge_l_question_answer_generation
            value: 15.46
          - name: METEOR (Question & Answer Generation)
            type: meteor_question_answer_generation
            value: 22.22
          - name: BERTScore (Question & Answer Generation)
            type: bertscore_question_answer_generation
            value: 69.78
          - name: MoverScore (Question & Answer Generation)
            type: moverscore_question_answer_generation
            value: 51.8
          - name: >-
              QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
            value: 79.89
          - name: >-
              QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
            value: 82.56
          - name: >-
              QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_bertscore_question_answer_generation_gold_answer
            value: 77.46
          - name: >-
              QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
            value: 54.82
          - name: >-
              QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_recall_moverscore_question_answer_generation_gold_answer
            value: 56.52
          - name: >-
              QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_moverscore_question_answer_generation_gold_answer
            value: 53.31

Model Card of lmqg/mt5-small-esquad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

Evaluation

Score Type Dataset
BERTScore 84.07 default lmqg/qg_esquad
Bleu_1 26.03 default lmqg/qg_esquad
Bleu_2 17.75 default lmqg/qg_esquad
Bleu_3 12.88 default lmqg/qg_esquad
Bleu_4 9.61 default lmqg/qg_esquad
METEOR 22.71 default lmqg/qg_esquad
MoverScore 59.06 default lmqg/qg_esquad
ROUGE_L 24.62 default lmqg/qg_esquad
  • Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score Type Dataset
BERTScore 89.41 default lmqg/qg_esquad
Bleu_1 39.84 default lmqg/qg_esquad
Bleu_2 26.59 default lmqg/qg_esquad
Bleu_3 18.28 default lmqg/qg_esquad
Bleu_4 12.77 default lmqg/qg_esquad
METEOR 37.58 default lmqg/qg_esquad
MoverScore 63.56 default lmqg/qg_esquad
QAAlignedF1Score (BERTScore) 89.43 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 63.73 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 89.44 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 63.75 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 89.41 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 63.72 default lmqg/qg_esquad
ROUGE_L 42.77 default lmqg/qg_esquad
Score Type Dataset
BERTScore 69.78 default lmqg/qg_esquad
Bleu_1 11.1 default lmqg/qg_esquad
Bleu_2 5.5 default lmqg/qg_esquad
Bleu_3 3 default lmqg/qg_esquad
Bleu_4 1.83 default lmqg/qg_esquad
METEOR 22.22 default lmqg/qg_esquad
MoverScore 51.8 default lmqg/qg_esquad
QAAlignedF1Score (BERTScore) 79.89 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 54.82 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 77.46 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 53.31 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 82.56 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 56.52 default lmqg/qg_esquad
ROUGE_L 15.46 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 16
  • batch: 64
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}