mt5-small-esquad-qg / README.md
asahi417's picture
model update
e0b877f
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: es
datasets:
- lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India."
example_title: "Question Generation Example 1"
- text: "a <hl> noviembre <hl> , que es también la estación lluviosa."
example_title: "Question Generation Example 2"
- text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/mt5-small-esquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_esquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 9.61
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 24.62
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 22.71
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 84.07
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 59.06
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 89.43
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 89.41
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 89.44
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 63.73
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 63.72
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 63.75
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
value: 79.89
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
value: 82.56
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
value: 77.46
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
value: 54.82
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
value: 56.52
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
value: 53.31
---
# Model Card of `lmqg/mt5-small-esquad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** es
- **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")
# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 84.07 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_1 | 26.03 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_2 | 17.75 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_3 | 12.88 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_4 | 9.61 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| METEOR | 22.71 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| MoverScore | 59.06 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| ROUGE_L | 24.62 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 89.43 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedF1Score (MoverScore) | 63.73 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (BERTScore) | 89.44 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (MoverScore) | 63.75 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (BERTScore) | 89.41 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (MoverScore) | 63.72 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mt5-small-esquad-ae`](https://huggingface.co/lmqg/mt5-small-esquad-ae). [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.lmqg_mt5-small-esquad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 79.89 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedF1Score (MoverScore) | 54.82 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (BERTScore) | 77.46 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedPrecision (MoverScore) | 53.31 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (BERTScore) | 82.56 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| QAAlignedRecall (MoverScore) | 56.52 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 16
- batch: 64
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```