lnxdx's picture
End of training
309cc0a
|
raw
history blame
2.73 kB
metadata
base_model: masoudmzb/wav2vec2-xlsr-multilingual-53-fa
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-persian-asr-shemo_lnxdx
    results: []

wav2vec2-large-xlsr-persian-asr-shemo_lnxdx

This model is a fine-tuned version of masoudmzb/wav2vec2-xlsr-multilingual-53-fa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7064
  • Wer: 0.3344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.9455 0.62 100 1.4247 0.4831
1.4824 1.25 200 1.1107 0.4331
1.2516 1.88 300 0.9141 0.4136
1.0859 2.5 400 0.8360 0.3975
1.0357 3.12 500 0.8097 0.3814
1.0472 3.75 600 0.7550 0.3753
0.9963 4.38 700 0.7533 0.3636
0.9767 5.0 800 0.7424 0.3589
0.9667 5.62 900 0.7360 0.3516
0.9385 6.25 1000 0.7355 0.3487
0.9805 6.88 1100 0.7237 0.3464
0.976 7.5 1200 0.7078 0.3455
0.88 8.12 1300 0.7229 0.3438
0.9421 8.75 1400 0.7180 0.3432
0.9584 9.38 1500 0.7059 0.3364
0.88 10.0 1600 0.7106 0.3364
0.9113 10.62 1700 0.7125 0.3344
0.912 11.25 1800 0.7091 0.3353
0.9607 11.88 1900 0.7066 0.3344
0.8974 12.5 2000 0.7064 0.3344

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0