|
--- |
|
base_model: masoudmzb/wav2vec2-xlsr-multilingual-53-fa |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xlsr-persian-asr-shemo_lnxdx |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xlsr-persian-asr-shemo_lnxdx |
|
|
|
This model is a fine-tuned version of [masoudmzb/wav2vec2-xlsr-multilingual-53-fa](https://huggingface.co/masoudmzb/wav2vec2-xlsr-multilingual-53-fa) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7064 |
|
- Wer: 0.3344 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 1.9455 | 0.62 | 100 | 1.4247 | 0.4831 | |
|
| 1.4824 | 1.25 | 200 | 1.1107 | 0.4331 | |
|
| 1.2516 | 1.88 | 300 | 0.9141 | 0.4136 | |
|
| 1.0859 | 2.5 | 400 | 0.8360 | 0.3975 | |
|
| 1.0357 | 3.12 | 500 | 0.8097 | 0.3814 | |
|
| 1.0472 | 3.75 | 600 | 0.7550 | 0.3753 | |
|
| 0.9963 | 4.38 | 700 | 0.7533 | 0.3636 | |
|
| 0.9767 | 5.0 | 800 | 0.7424 | 0.3589 | |
|
| 0.9667 | 5.62 | 900 | 0.7360 | 0.3516 | |
|
| 0.9385 | 6.25 | 1000 | 0.7355 | 0.3487 | |
|
| 0.9805 | 6.88 | 1100 | 0.7237 | 0.3464 | |
|
| 0.976 | 7.5 | 1200 | 0.7078 | 0.3455 | |
|
| 0.88 | 8.12 | 1300 | 0.7229 | 0.3438 | |
|
| 0.9421 | 8.75 | 1400 | 0.7180 | 0.3432 | |
|
| 0.9584 | 9.38 | 1500 | 0.7059 | 0.3364 | |
|
| 0.88 | 10.0 | 1600 | 0.7106 | 0.3364 | |
|
| 0.9113 | 10.62 | 1700 | 0.7125 | 0.3344 | |
|
| 0.912 | 11.25 | 1800 | 0.7091 | 0.3353 | |
|
| 0.9607 | 11.88 | 1900 | 0.7066 | 0.3344 | |
|
| 0.8974 | 12.5 | 2000 | 0.7064 | 0.3344 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|