lnxdx's picture
End of training
730d5bf
|
raw
history blame
2.73 kB
metadata
base_model: masoudmzb/wav2vec2-xlsr-multilingual-53-fa
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-persian-asr-shemo_me7494
    results: []

wav2vec2-large-xlsr-persian-asr-shemo_me7494

This model is a fine-tuned version of masoudmzb/wav2vec2-xlsr-multilingual-53-fa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6728
  • Wer: 0.3286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8553 0.62 100 1.4126 0.4866
1.4083 1.25 200 1.0428 0.4366
1.1718 1.88 300 0.8683 0.4127
0.9919 2.5 400 0.7921 0.3919
0.9493 3.12 500 0.7676 0.3744
0.9414 3.75 600 0.7247 0.3695
0.8897 4.38 700 0.7202 0.3598
0.8716 5.0 800 0.7096 0.3546
0.8467 5.62 900 0.7023 0.3499
0.8227 6.25 1000 0.6994 0.3411
0.855 6.88 1100 0.6883 0.3432
0.8457 7.5 1200 0.6773 0.3426
0.7614 8.12 1300 0.6913 0.3344
0.8127 8.75 1400 0.6827 0.3335
0.8443 9.38 1500 0.6725 0.3356
0.7548 10.0 1600 0.6759 0.3318
0.7839 10.62 1700 0.6773 0.3286
0.7912 11.25 1800 0.6748 0.3286
0.8238 11.88 1900 0.6735 0.3297
0.7618 12.5 2000 0.6728 0.3286

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0