lnxdx's picture
Update README.md
869d3c6
|
raw
history blame
5.38 kB
metadata
base_model: masoudmzb/wav2vec2-xlsr-multilingual-53-fa
metrics:
  - wer
widget:
  - example_title: M22N20
    src: https://huggingface.co/lnxdx/20_2000_1e-5_hp-mehrdad/blob/main/M16A01.wav
  - example_title: Common Voice sample 2978
    src: >-
      https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample2978.flac
  - example_title: Common Voice sample 5168
    src: >-
      https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample5168.flac
model-index:
  - name: wav2vec2-large-xlsr-persian-shemo
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13.0 fa
          type: common_voice_13_0
          args: fa
        metrics:
          - name: Test WER
            type: wer
            value: 19.21
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ShEMO
          type: shemo
          args: fa
        metrics:
          - name: Test WER
            type: wer
            value: 32.85
language:
  - fa
pipeline_tag: automatic-speech-recognition
tags:
  - audio
  - speech
  - automatic-speech-recognition
  - asr

Wav2Vec2 Large XLSR Persian ShEMO

This model is a fine-tuned version of masoudmzb/wav2vec2-xlsr-multilingual-53-fa on the ShEMO dataset for speech recognition in Persian (Farsi). When using this model, make sure that your speech input is sampled at 16 kHz.

It achieves the following results:

  • Loss on ShEMO train set: 0.7618
  • Loss on ShEMO dev set: 0.6728
  • WER on ShEMO train set: 30.47
  • WER on ShEMO dev set: 32.85
  • WER on Common Voice 13 test set: 19.21

Evaluation

Checkpoint Name WER on ShEMO dev set WER on Common Voice 13 test set Average
m3hrdadfi/wav2vec2-large-xlsr-persian-v3 46.55 17.43 31.99
m3hrdadfi/wav2vec2-large-xlsr-persian-shemo 7.42 33.88 20.65
masoudmzb/wav2vec2-xlsr-multilingual-53-fa 56.54 24.68 40.61
This checkpoint 32.85 19.21 25.89

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Model hyperparameters

model = Wav2Vec2ForCTC.from_pretrained(
    model_name_or_path if not last_checkpoint else last_checkpoint,
    # hp-mehrdad: Hyperparams of 'm3hrdadfi/wav2vec2-large-xlsr-persian-v3'
    attention_dropout = 0.05316,
    hidden_dropout    = 0.01941,
    feat_proj_dropout = 0.01249,
    mask_time_prob    = 0.04529,
    layerdrop         = 0.01377,
    ctc_loss_reduction = 'mean',
    ctc_zero_infinity = True,
)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8553 0.62 100 1.4126 0.4866
1.4083 1.25 200 1.0428 0.4366
1.1718 1.88 300 0.8683 0.4127
0.9919 2.5 400 0.7921 0.3919
0.9493 3.12 500 0.7676 0.3744
0.9414 3.75 600 0.7247 0.3695
0.8897 4.38 700 0.7202 0.3598
0.8716 5.0 800 0.7096 0.3546
0.8467 5.62 900 0.7023 0.3499
0.8227 6.25 1000 0.6994 0.3411
0.855 6.88 1100 0.6883 0.3432
0.8457 7.5 1200 0.6773 0.3426
0.7614 8.12 1300 0.6913 0.3344
0.8127 8.75 1400 0.6827 0.3335
0.8443 9.38 1500 0.6725 0.3356
0.7548 10.0 1600 0.6759 0.3318
0.7839 10.62 1700 0.6773 0.3286
0.7912 11.25 1800 0.6748 0.3286
0.8238 11.88 1900 0.6735 0.3297
0.7618 12.5 2000 0.6728 0.3286

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0