base_model: masoudmzb/wav2vec2-xlsr-multilingual-53-fa
metrics:
- wer
widget:
- example_title: M22N20
src: https://huggingface.co/lnxdx/20_2000_1e-5_hp-mehrdad/blob/main/M16A01.wav
- example_title: Common Voice sample 2978
src: >-
https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample2978.flac
- example_title: Common Voice sample 5168
src: >-
https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample5168.flac
model-index:
- name: wav2vec2-large-xlsr-persian-shemo
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13.0 fa
type: common_voice_13_0
args: fa
metrics:
- name: Test WER
type: wer
value: 19.21
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: ShEMO
type: shemo
args: fa
metrics:
- name: Test WER
type: wer
value: 32.85
language:
- fa
pipeline_tag: automatic-speech-recognition
tags:
- audio
- speech
- automatic-speech-recognition
- asr
Wav2Vec2 Large XLSR Persian ShEMO
This model is a fine-tuned version of masoudmzb/wav2vec2-xlsr-multilingual-53-fa on the ShEMO dataset for speech recognition in Persian (Farsi). When using this model, make sure that your speech input is sampled at 16 kHz.
It achieves the following results:
- Loss on ShEMO train set: 0.7618
- Loss on ShEMO dev set: 0.6728
- WER on ShEMO train set: 30.47
- WER on ShEMO dev set: 32.85
- WER on Common Voice 13 test set: 19.21
Evaluation results 🌡️
Checkpoint Name | WER on ShEMO dev set | WER on Common Voice 13 test set | Max :) |
---|---|---|---|
m3hrdadfi/wav2vec2-large-xlsr-persian-v3 | 46.55 | 17.43 | 46.55 |
m3hrdadfi/wav2vec2-large-xlsr-persian-shemo | 7.42 | 33.88 | 33.88 |
masoudmzb/wav2vec2-xlsr-multilingual-53-fa | 56.54 | 24.68 | 56.54 |
This checkpoint | 32.85 | 19.21 | 32.85 |
As you can see, my model performs better in maximum case :D
Training procedure
Training hyperparameters
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
You may need gradient_accumulation because you need more batch size.
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.8553 | 0.62 | 100 | 1.4126 | 0.4866 |
1.4083 | 1.25 | 200 | 1.0428 | 0.4366 |
1.1718 | 1.88 | 300 | 0.8683 | 0.4127 |
0.9919 | 2.5 | 400 | 0.7921 | 0.3919 |
0.9493 | 3.12 | 500 | 0.7676 | 0.3744 |
0.9414 | 3.75 | 600 | 0.7247 | 0.3695 |
0.8897 | 4.38 | 700 | 0.7202 | 0.3598 |
0.8716 | 5.0 | 800 | 0.7096 | 0.3546 |
0.8467 | 5.62 | 900 | 0.7023 | 0.3499 |
0.8227 | 6.25 | 1000 | 0.6994 | 0.3411 |
0.855 | 6.88 | 1100 | 0.6883 | 0.3432 |
0.8457 | 7.5 | 1200 | 0.6773 | 0.3426 |
0.7614 | 8.12 | 1300 | 0.6913 | 0.3344 |
0.8127 | 8.75 | 1400 | 0.6827 | 0.3335 |
0.8443 | 9.38 | 1500 | 0.6725 | 0.3356 |
0.7548 | 10.0 | 1600 | 0.6759 | 0.3318 |
0.7839 | 10.62 | 1700 | 0.6773 | 0.3286 |
0.7912 | 11.25 | 1800 | 0.6748 | 0.3286 |
0.8238 | 11.88 | 1900 | 0.6735 | 0.3297 |
0.7618 | 12.5 | 2000 | 0.6728 | 0.3286 |
Hyperparameter tuning
Several models with differet hyperparameters were trained. The following figures show the training process for three of them. 20_2000_1e-5_hp-mehrdad is the current model (lnxdx/Wav2Vec2-Large-XLSR-Persian-ShEMO) and it's hyperparameters are:
model = Wav2Vec2ForCTC.from_pretrained(
model_name_or_path if not last_checkpoint else last_checkpoint,
# hp-mehrdad: Hyperparams of 'm3hrdadfi/wav2vec2-large-xlsr-persian-v3'
attention_dropout = 0.05316,
hidden_dropout = 0.01941,
feat_proj_dropout = 0.01249,
mask_time_prob = 0.04529,
layerdrop = 0.01377,
ctc_loss_reduction = 'mean',
ctc_zero_infinity = True,
)
The hyperparameters of 19_2000_1e-5_hp-base are:
model = Wav2Vec2ForCTC.from_pretrained(
model_name_or_path if not last_checkpoint else last_checkpoint,
# hp-base: Hyperparams simmilar to ('facebook/wav2vec2-large-xlsr-53' or 'facebook/wav2vec2-xls-r-300m')
attention_dropout = 0.1,
hidden_dropout = 0.1,
feat_proj_dropout = 0.1,
mask_time_prob = 0.075,
layerdrop = 0.1,
ctc_loss_reduction = 'mean',
ctc_zero_infinity = True,
)
And the hyperparameters of 22_2000_1e-5_hp-masoud are:
model = Wav2Vec2ForCTC.from_pretrained(
model_name_or_path if not last_checkpoint else last_checkpoint,
# hp-masoud: Hyperparams of 'masoudmzb/wav2vec2-xlsr-multilingual-53-fa'
attention_dropout = 0.2,
hidden_dropout = 0.2,
feat_proj_dropout = 0.1,
mask_time_prob = 0.2,
layerdrop = 0.2,
ctc_loss_reduction = 'mean',
ctc_zero_infinity = True,
)
Learning rate is 1e-5 for all three models.
As you can see this model performs better with WER metric on validation(evaluation) set.
The script used for training can be found here.
Check out this blog for more information.
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Contact us 🤝
If you have any technical question regarding the model, pretraining, code or publication, please create an issue in the repository. This is the best way to reach us.