Pythia-160m finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-160m for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-160m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.2125 ± 0.0120
none 0 acc_norm 0.2312 ± 0.0123
arc_easy 1 none 0 acc 0.3965 ± 0.0100
none 0 acc_norm 0.3830 ± 0.0100
boolq 2 none 0 acc 0.5853 ± 0.0086
hellaswag 1 none 0 acc 0.2811 ± 0.0045
none 0 acc_norm 0.2940 ± 0.0045
lambada_openai 1 none 0 perplexity 444.4464 ± 24.5439
none 0 acc 0.1034 ± 0.0042
openbookqa 1 none 0 acc 0.1500 ± 0.0160
none 0 acc_norm 0.2480 ± 0.0193
piqa 1 none 0 acc 0.5947 ± 0.0115
none 0 acc_norm 0.5876 ± 0.0115
sciq 1 none 0 acc 0.5880 ± 0.0156
none 0 acc_norm 0.6180 ± 0.0154
wikitext 2 none 0 word_perplexity 88.8633 ± N/A
none 0 byte_perplexity 2.3143 ± N/A
none 0 bits_per_byte 1.2106 ± N/A
winogrande 1 none 0 acc 0.4980 ± 0.0141

hf (pretrained=lomahony/pythia-160m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.1928 ± 0.0115
none 5 acc_norm 0.2398 ± 0.0125
arc_easy 1 none 5 acc 0.3678 ± 0.0099
none 5 acc_norm 0.3657 ± 0.0099
boolq 2 none 5 acc 0.5841 ± 0.0086
hellaswag 1 none 5 acc 0.2807 ± 0.0045
none 5 acc_norm 0.2876 ± 0.0045
lambada_openai 1 none 5 perplexity 1607.2529 ± 88.3065
none 5 acc 0.0574 ± 0.0032
openbookqa 1 none 5 acc 0.1580 ± 0.0163
none 5 acc_norm 0.2400 ± 0.0191
piqa 1 none 5 acc 0.5958 ± 0.0114
none 5 acc_norm 0.5773 ± 0.0115
sciq 1 none 5 acc 0.5110 ± 0.0158
none 5 acc_norm 0.5740 ± 0.0156
wikitext 2 none 5 word_perplexity 88.8633 ± N/A
none 5 byte_perplexity 2.3143 ± N/A
none 5 bits_per_byte 1.2106 ± N/A
winogrande 1 none 5 acc 0.5162 ± 0.0140
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-160m-helpful-dpo

Collection including lomahony/pythia-160m-helpful-dpo