louislu9911's picture
Model save
9a3aa29 verified
|
raw
history blame
2.82 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-base-22k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: BaseModel-leaf-disease-convnextv2-base-22k-224-0_1_2_3_4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8813084112149533

BaseModel-leaf-disease-convnextv2-base-22k-224-0_1_2_3_4

This model is a fine-tuned version of facebook/convnextv2-base-22k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3419
  • Accuracy: 0.8813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 300
  • eval_batch_size: 300
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1200
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4178 0.98 16 0.9457 0.6215
0.6112 1.97 32 0.4856 0.8294
0.4468 2.95 48 0.4163 0.8575
0.3659 4.0 65 0.3790 0.8715
0.3481 4.98 81 0.3655 0.8785
0.3338 5.97 97 0.3637 0.8748
0.3216 6.95 113 0.3568 0.8752
0.2948 8.0 130 0.3493 0.8808
0.2944 8.98 146 0.3483 0.8808
0.2857 9.97 162 0.3474 0.8808
0.2711 10.95 178 0.3442 0.8790
0.2682 12.0 195 0.3418 0.8813
0.252 12.98 211 0.3409 0.8827
0.2598 13.97 227 0.3405 0.8827
0.2621 14.95 243 0.3432 0.8813
0.2602 15.75 256 0.3419 0.8813

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1