|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/resnet-152 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: resnet-152-finetuned-cassava-leaf-disease |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7397196261682243 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# resnet-152-finetuned-cassava-leaf-disease |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7961 |
|
- Accuracy: 0.7397 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 480 |
|
- eval_batch_size: 480 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 1920 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 7.309 | 0.98 | 10 | 7.0088 | 0.0028 | |
|
| 6.9946 | 1.95 | 20 | 6.4363 | 0.0061 | |
|
| 6.4082 | 2.93 | 30 | 5.5840 | 0.0673 | |
|
| 5.6018 | 4.0 | 41 | 4.1884 | 0.3687 | |
|
| 4.5652 | 4.98 | 51 | 3.3123 | 0.4640 | |
|
| 3.6106 | 5.95 | 61 | 2.7918 | 0.5136 | |
|
| 2.9184 | 6.93 | 71 | 2.3762 | 0.5636 | |
|
| 2.3775 | 8.0 | 82 | 1.9163 | 0.6084 | |
|
| 2.0119 | 8.98 | 92 | 1.7038 | 0.6299 | |
|
| 1.7519 | 9.95 | 102 | 1.5220 | 0.6411 | |
|
| 1.4995 | 10.93 | 112 | 1.3828 | 0.6575 | |
|
| 1.3648 | 12.0 | 123 | 1.2715 | 0.6668 | |
|
| 1.2357 | 12.98 | 133 | 1.2040 | 0.6692 | |
|
| 1.1606 | 13.95 | 143 | 1.1249 | 0.6785 | |
|
| 1.0793 | 14.93 | 153 | 1.0600 | 0.6897 | |
|
| 1.0332 | 16.0 | 164 | 1.0160 | 0.6935 | |
|
| 0.9724 | 16.98 | 174 | 0.9706 | 0.7047 | |
|
| 0.9349 | 17.95 | 184 | 0.9524 | 0.7075 | |
|
| 0.895 | 18.93 | 194 | 0.9210 | 0.7093 | |
|
| 0.8913 | 20.0 | 205 | 0.9007 | 0.7168 | |
|
| 0.8519 | 20.98 | 215 | 0.8672 | 0.7229 | |
|
| 0.8434 | 21.95 | 225 | 0.8432 | 0.7252 | |
|
| 0.8346 | 22.93 | 235 | 0.8307 | 0.7304 | |
|
| 0.8019 | 24.0 | 246 | 0.8154 | 0.7308 | |
|
| 0.8001 | 24.98 | 256 | 0.8121 | 0.7327 | |
|
| 0.7813 | 25.95 | 266 | 0.8036 | 0.7341 | |
|
| 0.7845 | 26.93 | 276 | 0.8025 | 0.7383 | |
|
| 0.7635 | 28.0 | 287 | 0.7934 | 0.7444 | |
|
| 0.7782 | 28.98 | 297 | 0.7910 | 0.7421 | |
|
| 0.7634 | 29.27 | 300 | 0.7961 | 0.7397 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|