results
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0589
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 100 | 0.3525 |
No log | 2.0 | 200 | 0.3112 |
No log | 3.0 | 300 | 0.2998 |
No log | 4.0 | 400 | 0.2830 |
0.6117 | 5.0 | 500 | 0.2682 |
0.6117 | 6.0 | 600 | 0.2514 |
0.6117 | 7.0 | 700 | 0.2319 |
0.6117 | 8.0 | 800 | 0.2051 |
0.6117 | 9.0 | 900 | 0.1846 |
0.2327 | 10.0 | 1000 | 0.1573 |
0.2327 | 11.0 | 1100 | 0.1433 |
0.2327 | 12.0 | 1200 | 0.1249 |
0.2327 | 13.0 | 1300 | 0.1147 |
0.2327 | 14.0 | 1400 | 0.1047 |
0.1381 | 15.0 | 1500 | 0.1016 |
0.1381 | 16.0 | 1600 | 0.0958 |
0.1381 | 17.0 | 1700 | 0.0903 |
0.1381 | 18.0 | 1800 | 0.0844 |
0.1381 | 19.0 | 1900 | 0.0821 |
0.0958 | 20.0 | 2000 | 0.0808 |
0.0958 | 21.0 | 2100 | 0.0743 |
0.0958 | 22.0 | 2200 | 0.0722 |
0.0958 | 23.0 | 2300 | 0.0690 |
0.0958 | 24.0 | 2400 | 0.0666 |
0.0758 | 25.0 | 2500 | 0.0642 |
0.0758 | 26.0 | 2600 | 0.0620 |
0.0758 | 27.0 | 2700 | 0.0609 |
0.0758 | 28.0 | 2800 | 0.0597 |
0.0758 | 29.0 | 2900 | 0.0590 |
0.0632 | 30.0 | 3000 | 0.0589 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for lovellmnot/results
Base model
meta-llama/Meta-Llama-3-8B-Instruct