results / README.md
lrycro's picture
bert-phishing-trainer
493a3e9 verified
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2090
  • Accuracy: 0.9467
  • F1: 0.9463
  • Precision: 0.9469
  • Recall: 0.9467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4561 1.0 1098 0.3688 0.8738 0.8709 0.8760 0.8738
0.3126 2.0 2196 0.2254 0.9339 0.9335 0.9340 0.9339
0.3852 3.0 3294 0.3113 0.9280 0.9274 0.9284 0.9280
0.2341 4.0 4392 0.2376 0.9417 0.9417 0.9418 0.9417
0.2108 5.0 5490 0.2433 0.9408 0.9407 0.9407 0.9408
0.0882 6.0 6588 0.2353 0.9371 0.9364 0.9384 0.9371
0.127 7.0 7686 0.2674 0.9276 0.9270 0.9277 0.9276
0.1413 8.0 8784 0.2859 0.9339 0.9341 0.9344 0.9339
0.7061 9.0 9882 0.6121 0.6761 0.5834 0.7861 0.6761
0.2076 10.0 10980 0.2090 0.9467 0.9463 0.9469 0.9467

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2