File size: 2,577 Bytes
d0613e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: xls-r-fleurs_nl-run3
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.42659804983748645
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xls-r-fleurs_nl-run3

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5523
- Wer: 0.4266

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 7.768         | 0.41  | 100  | 3.9649          | 1.0    |
| 3.2646        | 0.82  | 200  | 2.9551          | 1.0    |
| 2.9217        | 1.23  | 300  | 2.9128          | 1.0    |
| 2.9064        | 1.64  | 400  | 2.9067          | 1.0    |
| 2.6775        | 2.05  | 500  | 1.5774          | 0.9177 |
| 1.1026        | 2.47  | 600  | 0.8813          | 0.7216 |
| 0.6905        | 2.88  | 700  | 0.7287          | 0.6138 |
| 0.4936        | 3.29  | 800  | 0.6156          | 0.5439 |
| 0.3837        | 3.7   | 900  | 0.5608          | 0.4992 |
| 0.3176        | 4.11  | 1000 | 0.5326          | 0.4542 |
| 0.2391        | 4.52  | 1100 | 0.5221          | 0.4466 |
| 0.2426        | 4.93  | 1200 | 0.5127          | 0.4328 |
| 0.1882        | 5.34  | 1300 | 0.5311          | 0.4247 |
| 0.1718        | 5.75  | 1400 | 0.5523          | 0.4266 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3