thea-rp-3b-25r / README.md
Piotr Zalewski
Adding Evaluation Results (#1)
8298412 verified
|
raw
history blame
5.65 kB
---
language:
- en
license: llama3.2
tags:
- text-generation-inference
- transformers
- llama
- trl
- sft
- reasoning
- llama-3
base_model: SicariusSicariiStuff/Impish_LLAMA_3B
datasets:
- KingNish/reasoning-base-20k
model-index:
- name: thea-rp-3b-25r
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 65.78
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 20.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.71
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.24
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.93
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 22.89
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=piotr25691/thea-rp-3b-25r
name: Open LLM Leaderboard
---
# Model Description
A work in progress uncensored roleplay reasoning Llama 3.2 3B model trained on reasoning data.
Since I used different training code, it is unknown whether it generates the same kind of reasoning.
Here is what inference code you should use:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_REASONING_TOKENS = 1024
MAX_RESPONSE_TOKENS = 512
model_name = "piotr25691/thea-3b-25r"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Which is greater 9.9 or 9.11 ??"
messages = [
{"role": "user", "content": prompt}
]
# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
# print("REASONING: " + reasoning_output)
# Generate answer
messages.append({"role": "reasoning", "content": reasoning_output})
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
print("ANSWER: " + response_output)
```
- **Trained by:** [Piotr Zalewski](https://huggingface.co/piotr25691)
- **License:** llama3.2
- **Finetuned from model:** [SicariusSicariiStuff/Impish_LLAMA_3B](https://huggingface.co/SicariusSicariiStuff/Impish_LLAMA_3B)
- **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4).
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_piotr25691__thea-rp-3b-25r)
| Metric |Value|
|-------------------|----:|
|Avg. |21.59|
|IFEval (0-Shot) |65.78|
|BBH (3-Shot) |20.01|
|MATH Lvl 5 (4-Shot)|11.71|
|GPQA (0-shot) | 3.24|
|MuSR (0-shot) | 5.93|
|MMLU-PRO (5-shot) |22.89|