Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
decline
  • 'no i am not registered with medicare for part a or part b'
  • "no i'm not in"
  • "thank you very much but i don't think i will need that"
provide_age
  • 'my age is 36'
  • "i'm 62 years old"
  • '49'
complain_calls
  • 'stop disrupting my life with these calls'
  • 'your constant calls are causing me distress'
  • 'same as i was last time you called'
already
  • 'i already charged it should be good to go'
  • 'already took care of it no worries'
  • 'got the app installed already'
Not_Interested
  • "oh but i'm not interested"
  • "no i don't want to talk i don't want to talk"
  • "i'm not interested in making any decisions right now"
DNC
  • 'i asked you to stop calling me'
  • "i've had enough no more calls"
  • 'would you take me off your list please'
where_get_number
  • "i never provided my number to you what's going on"
  • 'who is responsible for sharing my number with you'
  • "what's the source of my contact details in your database"
language_barrier
  • "speak espanol i'm lost"
  • "sorry i'm not speaking english"
  • 'no english'
answering_machine
  • 'this is the voicemail system record your message after the beep'
  • 'this is the voicemail speak your message after the beep'
  • 'you have reached a law source number that is no longer in service please check the number you have dialed'
BUSY
  • "i'm engaged in a conference call can we talk later"
  • "right now i'm not able to talk right now bye"
  • "i don't have time"
where_are_you_calling_from
  • 'is the philippines where your organization is based'
  • 'where can i find your headquarters'
  • "can you confirm if you're in canada"
scam
  • "that's none of your business"
  • "i don't think i'm going to say it"
  • 'scammers are clever what measures do you have to counteract them'
affirmation
  • 'yeah you are'
  • "for sure that's correct"
  • 'i have secured both medicare part a and part b coverage'
transfer_request
  • 'i want to discuss this with someone higher up'
  • 'transfer my call to your superior please'
  • 'i require assistance from your manager immediately'
abusive
  • 'what the fuck you calling me for'
  • 'and you rather the fucking guy you fucked up'
  • 'crikey'
calling_about
  • 'why are you getting in touch with me'
  • "what's the main subject of discussion in this call"
  • "what's the rationale behind this call"
GreetBack
  • "what's crackin' how you been"
  • "i'm doing good how are you doing"
  • "hi i'm fine how's your day been so far"
say_again
  • 'can you please say that again'
  • 'sorry i need you to repeat that'
  • 'what was that can you repeat it'
sorry_greeting
  • "to be honest i'm feeling a bit down"
  • "i'm not really in a great mood"
  • "i'm not feeling very joyful right now"
not_decision_maker
  • 'decisions like this require a different approach'
  • "decisions of this nature aren't mine to make"
  • 'decisions in this regard are not mine to make'
hold_a_sec
  • 'please stay on the line while i check'
  • 'i need to consult with my colleague hold on'
  • "i'll be right back don't disconnect"
interested
  • 'your topic has piqued my curiosity do continue'
  • 'go'
  • "i'm all ears talk"
greetings
  • "i'm doing great thank you"
  • "hi there hope you're having a splendid day"
  • 'rest well and recharge good night'
who_are_you
  • 'start by telling me who you are'
  • 'can you tell me your given name'
  • "what's your name and position"
can_you_email
  • 'can you send an email with the instructions'
  • 'can you email me the contract terms'
  • 'is email the preferred way to receive updates'
DNQ
  • "i'm not the right fit for this"
  • "i'm not the right person for this"
  • "it's not the right fit for me"
are_you_bot
  • 'is this interaction with an automated system'
  • 'is this interaction with a human or a bot'
  • 'is this interaction with a robot or human'
other
  • 'i love exploring the different neighborhoods of our city each has its own charm'
  • 'no i have to buy a car'
  • 'i was just reading an article about the latest technological innovations'
weather
  • "how's the climate today"
  • 'tell me what the weather is like'
  • "how's the weather in the morning"

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("m-aliabbas1/medicare_idrak_ab")
# Run inference
preds = model("35")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 7.3794 109
Label Training Sample Count
BUSY 528
DNC 585
DNQ 96
GreetBack 224
Not_Interested 497
abusive 145
affirmation 306
already 70
answering_machine 316
are_you_bot 205
calling_about 147
can_you_email 116
complain_calls 65
decline 455
greetings 82
hold_a_sec 79
interested 94
language_barrier 163
not_decision_maker 83
other 56
provide_age 355
say_again 83
scam 110
sorry_greeting 102
transfer_request 73
weather 129
where_are_you_calling_from 250
where_get_number 127
who_are_you 221

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.2366 -
0.0017 50 0.1785 -
0.0035 100 0.1604 -
0.0052 150 0.1877 -
0.0069 200 0.1209 -
0.0087 250 0.161 -
0.0104 300 0.1261 -
0.0121 350 0.153 -
0.0139 400 0.1333 -
0.0156 450 0.0675 -
0.0174 500 0.0623 -
0.0191 550 0.1324 -
0.0208 600 0.0481 -
0.0226 650 0.0894 -
0.0243 700 0.0484 -
0.0260 750 0.0683 -
0.0278 800 0.1025 -
0.0295 850 0.028 -
0.0312 900 0.0218 -
0.0330 950 0.0078 -
0.0347 1000 0.0682 -
0.0364 1050 0.0094 -
0.0382 1100 0.0836 -
0.0399 1150 0.0858 -
0.0417 1200 0.0115 -
0.0434 1250 0.0738 -
0.0451 1300 0.009 -
0.0469 1350 0.044 -
0.0486 1400 0.059 -
0.0503 1450 0.0271 -
0.0521 1500 0.1249 -
0.0538 1550 0.0032 -
0.0555 1600 0.0897 -
0.0573 1650 0.0758 -
0.0590 1700 0.0573 -
0.0607 1750 0.0063 -
0.0625 1800 0.011 -
0.0642 1850 0.005 -
0.0659 1900 0.0545 -
0.0677 1950 0.0216 -
0.0694 2000 0.0059 -
0.0712 2050 0.0043 -
0.0729 2100 0.0109 -
0.0746 2150 0.0049 -
0.0764 2200 0.012 -
0.0781 2250 0.0012 -
0.0798 2300 0.0284 -
0.0816 2350 0.0089 -
0.0833 2400 0.0023 -
0.0850 2450 0.0234 -
0.0868 2500 0.0463 -
0.0885 2550 0.0647 -
0.0902 2600 0.0578 -
0.0920 2650 0.0119 -
0.0937 2700 0.0562 -
0.0955 2750 0.0009 -
0.0972 2800 0.0573 -
0.0989 2850 0.0042 -
0.1007 2900 0.0028 -
0.1024 2950 0.0048 -
0.1041 3000 0.1124 -
0.1059 3050 0.0022 -
0.1076 3100 0.0033 -
0.1093 3150 0.0029 -
0.1111 3200 0.0281 -
0.1128 3250 0.0474 -
0.1145 3300 0.0059 -
0.1163 3350 0.0198 -
0.1180 3400 0.128 -
0.1198 3450 0.0092 -
0.1215 3500 0.0023 -
0.1232 3550 0.044 -
0.1250 3600 0.0333 -
0.1267 3650 0.0014 -
0.1284 3700 0.0019 -
0.1302 3750 0.0514 -
0.1319 3800 0.0004 -
0.1336 3850 0.0022 -
0.1354 3900 0.0012 -
0.1371 3950 0.0598 -
0.1388 4000 0.0013 -
0.1406 4050 0.0597 -
0.1423 4100 0.0004 -
0.1440 4150 0.0038 -
0.1458 4200 0.0523 -
0.1475 4250 0.0481 -
0.1493 4300 0.1062 -
0.1510 4350 0.0033 -
0.1527 4400 0.0007 -
0.1545 4450 0.0002 -
0.1562 4500 0.0009 -
0.1579 4550 0.0021 -
0.1597 4600 0.0013 -
0.1614 4650 0.0012 -
0.1631 4700 0.0012 -
0.1649 4750 0.0016 -
0.1666 4800 0.0002 -
0.1683 4850 0.0005 -
0.1701 4900 0.0039 -
0.1718 4950 0.0013 -
0.1736 5000 0.0022 -
0.1753 5050 0.0006 -
0.1770 5100 0.002 -
0.1788 5150 0.0004 -
0.1805 5200 0.0009 -
0.1822 5250 0.0004 -
0.1840 5300 0.0006 -
0.1857 5350 0.0107 -
0.1874 5400 0.0002 -
0.1892 5450 0.0006 -
0.1909 5500 0.0017 -
0.1926 5550 0.0049 -
0.1944 5600 0.0006 -
0.1961 5650 0.0138 -
0.1978 5700 0.011 -
0.1996 5750 0.0042 -
0.2013 5800 0.0017 -
0.2031 5850 0.0011 -
0.2048 5900 0.0103 -
0.2065 5950 0.0008 -
0.2083 6000 0.0615 -
0.2100 6050 0.0539 -
0.2117 6100 0.0016 -
0.2135 6150 0.0005 -
0.2152 6200 0.0004 -
0.2169 6250 0.0296 -
0.2187 6300 0.0003 -
0.2204 6350 0.0023 -
0.2221 6400 0.0306 -
0.2239 6450 0.0496 -
0.2256 6500 0.0433 -
0.2274 6550 0.0005 -
0.2291 6600 0.0109 -
0.2308 6650 0.0354 -
0.2326 6700 0.0007 -
0.2343 6750 0.0003 -
0.2360 6800 0.0006 -
0.2378 6850 0.0002 -
0.2395 6900 0.0014 -
0.2412 6950 0.0005 -
0.2430 7000 0.0002 -
0.2447 7050 0.0394 -
0.2464 7100 0.0006 -
0.2482 7150 0.0005 -
0.2499 7200 0.0002 -
0.2516 7250 0.0017 -
0.2534 7300 0.0004 -
0.2551 7350 0.0018 -
0.2569 7400 0.0184 -
0.2586 7450 0.0003 -
0.2603 7500 0.0515 -
0.2621 7550 0.0003 -
0.2638 7600 0.0013 -
0.2655 7650 0.0609 -
0.2673 7700 0.0017 -
0.2690 7750 0.0003 -
0.2707 7800 0.0011 -
0.2725 7850 0.0016 -
0.2742 7900 0.003 -
0.2759 7950 0.1212 -
0.2777 8000 0.0001 -
0.2794 8050 0.0004 -
0.2812 8100 0.0003 -
0.2829 8150 0.0608 -
0.2846 8200 0.0002 -
0.2864 8250 0.0003 -
0.2881 8300 0.0022 -
0.2898 8350 0.0052 -
0.2916 8400 0.0003 -
0.2933 8450 0.0001 -
0.2950 8500 0.0007 -
0.2968 8550 0.0336 -
0.2985 8600 0.0071 -
0.3002 8650 0.0002 -
0.3020 8700 0.0002 -
0.3037 8750 0.0107 -
0.3054 8800 0.0006 -
0.3072 8850 0.002 -
0.3089 8900 0.001 -
0.3107 8950 0.0002 -
0.3124 9000 0.0002 -
0.3141 9050 0.0021 -
0.3159 9100 0.0545 -
0.3176 9150 0.0007 -
0.3193 9200 0.0152 -
0.3211 9250 0.0003 -
0.3228 9300 0.0005 -
0.3245 9350 0.053 -
0.3263 9400 0.0031 -
0.3280 9450 0.0002 -
0.3297 9500 0.0002 -
0.3315 9550 0.0002 -
0.3332 9600 0.0009 -
0.3350 9650 0.0023 -
0.3367 9700 0.0011 -
0.3384 9750 0.0003 -
0.3402 9800 0.0003 -
0.3419 9850 0.0005 -
0.3436 9900 0.0004 -
0.3454 9950 0.0028 -
0.3471 10000 0.0016 -
0.3488 10050 0.0008 -
0.3506 10100 0.001 -
0.3523 10150 0.0005 -
0.3540 10200 0.0002 -
0.3558 10250 0.0002 -
0.3575 10300 0.0003 -
0.3593 10350 0.0003 -
0.3610 10400 0.0009 -
0.3627 10450 0.0001 -
0.3645 10500 0.0001 -
0.3662 10550 0.0002 -
0.3679 10600 0.0003 -
0.3697 10650 0.0002 -
0.3714 10700 0.0006 -
0.3731 10750 0.0042 -
0.3749 10800 0.0005 -
0.3766 10850 0.0009 -
0.3783 10900 0.0604 -
0.3801 10950 0.0002 -
0.3818 11000 0.0013 -
0.3835 11050 0.0001 -
0.3853 11100 0.0005 -
0.3870 11150 0.0007 -
0.3888 11200 0.0002 -
0.3905 11250 0.0001 -
0.3922 11300 0.0006 -
0.3940 11350 0.0593 -
0.3957 11400 0.0007 -
0.3974 11450 0.0001 -
0.3992 11500 0.0003 -
0.4009 11550 0.0647 -
0.4026 11600 0.0001 -
0.4044 11650 0.0001 -
0.4061 11700 0.0001 -
0.4078 11750 0.0003 -
0.4096 11800 0.0002 -
0.4113 11850 0.0128 -
0.4131 11900 0.0015 -
0.4148 11950 0.0002 -
0.4165 12000 0.0004 -
0.4183 12050 0.0003 -
0.4200 12100 0.0001 -
0.4217 12150 0.0003 -
0.4235 12200 0.0006 -
0.4252 12250 0.0205 -
0.4269 12300 0.0004 -
0.4287 12350 0.0002 -
0.4304 12400 0.0001 -
0.4321 12450 0.0002 -
0.4339 12500 0.0025 -
0.4356 12550 0.0002 -
0.4373 12600 0.0002 -
0.4391 12650 0.0102 -
0.4408 12700 0.0001 -
0.4426 12750 0.0002 -
0.4443 12800 0.0003 -
0.4460 12850 0.0002 -
0.4478 12900 0.0003 -
0.4495 12950 0.0003 -
0.4512 13000 0.0007 -
0.4530 13050 0.0001 -
0.4547 13100 0.0002 -
0.4564 13150 0.0002 -
0.4582 13200 0.0004 -
0.4599 13250 0.0002 -
0.4616 13300 0.0001 -
0.4634 13350 0.0001 -
0.4651 13400 0.0001 -
0.4669 13450 0.0002 -
0.4686 13500 0.0007 -
0.4703 13550 0.0023 -
0.4721 13600 0.0004 -
0.4738 13650 0.0001 -
0.4755 13700 0.0002 -
0.4773 13750 0.0001 -
0.4790 13800 0.0001 -
0.4807 13850 0.0002 -
0.4825 13900 0.0003 -
0.4842 13950 0.027 -
0.4859 14000 0.0002 -
0.4877 14050 0.0001 -
0.4894 14100 0.0002 -
0.4911 14150 0.0003 -
0.4929 14200 0.0001 -
0.4946 14250 0.0001 -
0.4964 14300 0.0002 -
0.4981 14350 0.0001 -
0.4998 14400 0.0002 -
0.5016 14450 0.0004 -
0.5033 14500 0.0001 -
0.5050 14550 0.0085 -
0.5068 14600 0.0008 -
0.5085 14650 0.0001 -
0.5102 14700 0.0001 -
0.5120 14750 0.0001 -
0.5137 14800 0.044 -
0.5154 14850 0.0001 -
0.5172 14900 0.0001 -
0.5189 14950 0.0001 -
0.5207 15000 0.0002 -
0.5224 15050 0.0001 -
0.5241 15100 0.0001 -
0.5259 15150 0.0003 -
0.5276 15200 0.003 -
0.5293 15250 0.0027 -
0.5311 15300 0.0001 -
0.5328 15350 0.0003 -
0.5345 15400 0.0003 -
0.5363 15450 0.0002 -
0.5380 15500 0.0004 -
0.5397 15550 0.0002 -
0.5415 15600 0.0001 -
0.5432 15650 0.0001 -
0.5449 15700 0.0002 -
0.5467 15750 0.0108 -
0.5484 15800 0.0001 -
0.5502 15850 0.0002 -
0.5519 15900 0.0001 -
0.5536 15950 0.0014 -
0.5554 16000 0.0001 -
0.5571 16050 0.0003 -
0.5588 16100 0.0008 -
0.5606 16150 0.0333 -
0.5623 16200 0.0018 -
0.5640 16250 0.0002 -
0.5658 16300 0.0002 -
0.5675 16350 0.0001 -
0.5692 16400 0.0001 -
0.5710 16450 0.0003 -
0.5727 16500 0.0001 -
0.5745 16550 0.0073 -
0.5762 16600 0.0012 -
0.5779 16650 0.0002 -
0.5797 16700 0.0001 -
0.5814 16750 0.0022 -
0.5831 16800 0.0003 -
0.5849 16850 0.0002 -
0.5866 16900 0.0001 -
0.5883 16950 0.0019 -
0.5901 17000 0.0003 -
0.5918 17050 0.0001 -
0.5935 17100 0.0003 -
0.5953 17150 0.0001 -
0.5970 17200 0.0001 -
0.5988 17250 0.0167 -
0.6005 17300 0.0002 -
0.6022 17350 0.0001 -
0.6040 17400 0.0001 -
0.6057 17450 0.0242 -
0.6074 17500 0.0015 -
0.6092 17550 0.0009 -
0.6109 17600 0.0001 -
0.6126 17650 0.0001 -
0.6144 17700 0.0001 -
0.6161 17750 0.0001 -
0.6178 17800 0.0001 -
0.6196 17850 0.0113 -
0.6213 17900 0.0001 -
0.6230 17950 0.0005 -
0.6248 18000 0.0017 -
0.6265 18050 0.0001 -
0.6283 18100 0.0001 -
0.6300 18150 0.0003 -
0.6317 18200 0.0001 -
0.6335 18250 0.0004 -
0.6352 18300 0.0001 -
0.6369 18350 0.0001 -
0.6387 18400 0.0021 -
0.6404 18450 0.0001 -
0.6421 18500 0.0002 -
0.6439 18550 0.0006 -
0.6456 18600 0.0001 -
0.6473 18650 0.0001 -
0.6491 18700 0.0003 -
0.6508 18750 0.0001 -
0.6526 18800 0.0001 -
0.6543 18850 0.0002 -
0.6560 18900 0.001 -
0.6578 18950 0.0002 -
0.6595 19000 0.0047 -
0.6612 19050 0.0001 -
0.6630 19100 0.0001 -
0.6647 19150 0.0002 -
0.6664 19200 0.0001 -
0.6682 19250 0.0001 -
0.6699 19300 0.0064 -
0.6716 19350 0.0001 -
0.6734 19400 0.0001 -
0.6751 19450 0.0001 -
0.6768 19500 0.0001 -
0.6786 19550 0.0001 -
0.6803 19600 0.0001 -
0.6821 19650 0.0001 -
0.6838 19700 0.0001 -
0.6855 19750 0.0002 -
0.6873 19800 0.0001 -
0.6890 19850 0.0001 -
0.6907 19900 0.0001 -
0.6925 19950 0.0001 -
0.6942 20000 0.0002 -
0.6959 20050 0.0015 -
0.6977 20100 0.0002 -
0.6994 20150 0.0001 -
0.7011 20200 0.0001 -
0.7029 20250 0.0001 -
0.7046 20300 0.0011 -
0.7064 20350 0.0001 -
0.7081 20400 0.0001 -
0.7098 20450 0.0001 -
0.7116 20500 0.0057 -
0.7133 20550 0.0 -
0.7150 20600 0.0001 -
0.7168 20650 0.0001 -
0.7185 20700 0.0001 -
0.7202 20750 0.0001 -
0.7220 20800 0.0001 -
0.7237 20850 0.0001 -
0.7254 20900 0.0002 -
0.7272 20950 0.0001 -
0.7289 21000 0.0001 -
0.7306 21050 0.0 -
0.7324 21100 0.0002 -
0.7341 21150 0.0001 -
0.7359 21200 0.0001 -
0.7376 21250 0.0001 -
0.7393 21300 0.0001 -
0.7411 21350 0.0001 -
0.7428 21400 0.0001 -
0.7445 21450 0.0001 -
0.7463 21500 0.0001 -
0.7480 21550 0.005 -
0.7497 21600 0.0001 -
0.7515 21650 0.0001 -
0.7532 21700 0.0001 -
0.7549 21750 0.0002 -
0.7567 21800 0.0001 -
0.7584 21850 0.0013 -
0.7602 21900 0.0001 -
0.7619 21950 0.0002 -
0.7636 22000 0.0 -
0.7654 22050 0.0001 -
0.7671 22100 0.0002 -
0.7688 22150 0.0001 -
0.7706 22200 0.0002 -
0.7723 22250 0.0001 -
0.7740 22300 0.0001 -
0.7758 22350 0.0002 -
0.7775 22400 0.0001 -
0.7792 22450 0.0013 -
0.7810 22500 0.0001 -
0.7827 22550 0.0002 -
0.7844 22600 0.0002 -
0.7862 22650 0.0069 -
0.7879 22700 0.0001 -
0.7897 22750 0.0001 -
0.7914 22800 0.0001 -
0.7931 22850 0.0001 -
0.7949 22900 0.0001 -
0.7966 22950 0.0001 -
0.7983 23000 0.0001 -
0.8001 23050 0.0002 -
0.8018 23100 0.0001 -
0.8035 23150 0.0001 -
0.8053 23200 0.0001 -
0.8070 23250 0.0001 -
0.8087 23300 0.0001 -
0.8105 23350 0.0001 -
0.8122 23400 0.0027 -
0.8140 23450 0.0001 -
0.8157 23500 0.0001 -
0.8174 23550 0.0027 -
0.8192 23600 0.0002 -
0.8209 23650 0.0002 -
0.8226 23700 0.0001 -
0.8244 23750 0.0003 -
0.8261 23800 0.0001 -
0.8278 23850 0.0001 -
0.8296 23900 0.0001 -
0.8313 23950 0.0001 -
0.8330 24000 0.0014 -
0.8348 24050 0.0083 -
0.8365 24100 0.0001 -
0.8383 24150 0.0001 -
0.8400 24200 0.0001 -
0.8417 24250 0.0001 -
0.8435 24300 0.0001 -
0.8452 24350 0.0001 -
0.8469 24400 0.0 -
0.8487 24450 0.0001 -
0.8504 24500 0.0001 -
0.8521 24550 0.022 -
0.8539 24600 0.0001 -
0.8556 24650 0.0001 -
0.8573 24700 0.0003 -
0.8591 24750 0.0001 -
0.8608 24800 0.0002 -
0.8625 24850 0.0001 -
0.8643 24900 0.0001 -
0.8660 24950 0.0001 -
0.8678 25000 0.0002 -
0.8695 25050 0.0001 -
0.8712 25100 0.0001 -
0.8730 25150 0.0001 -
0.8747 25200 0.0001 -
0.8764 25250 0.0007 -
0.8782 25300 0.0001 -
0.8799 25350 0.0001 -
0.8816 25400 0.0002 -
0.8834 25450 0.0001 -
0.8851 25500 0.0001 -
0.8868 25550 0.0001 -
0.8886 25600 0.0006 -
0.8903 25650 0.0003 -
0.8921 25700 0.0001 -
0.8938 25750 0.0002 -
0.8955 25800 0.0001 -
0.8973 25850 0.0001 -
0.8990 25900 0.0015 -
0.9007 25950 0.0005 -
0.9025 26000 0.0001 -
0.9042 26050 0.0056 -
0.9059 26100 0.0001 -
0.9077 26150 0.0001 -
0.9094 26200 0.0001 -
0.9111 26250 0.0001 -
0.9129 26300 0.0001 -
0.9146 26350 0.0001 -
0.9163 26400 0.0002 -
0.9181 26450 0.0001 -
0.9198 26500 0.0003 -
0.9216 26550 0.0001 -
0.9233 26600 0.0001 -
0.9250 26650 0.0002 -
0.9268 26700 0.0001 -
0.9285 26750 0.0002 -
0.9302 26800 0.0001 -
0.9320 26850 0.0002 -
0.9337 26900 0.0001 -
0.9354 26950 0.0001 -
0.9372 27000 0.0001 -
0.9389 27050 0.0001 -
0.9406 27100 0.0001 -
0.9424 27150 0.0001 -
0.9441 27200 0.0001 -
0.9459 27250 0.0001 -
0.9476 27300 0.0001 -
0.9493 27350 0.0001 -
0.9511 27400 0.0001 -
0.9528 27450 0.0001 -
0.9545 27500 0.0001 -
0.9563 27550 0.0035 -
0.9580 27600 0.0001 -
0.9597 27650 0.0002 -
0.9615 27700 0.0001 -
0.9632 27750 0.0001 -
0.9649 27800 0.0001 -
0.9667 27850 0.0002 -
0.9684 27900 0.0 -
0.9701 27950 0.0001 -
0.9719 28000 0.0001 -
0.9736 28050 0.0001 -
0.9754 28100 0.0001 -
0.9771 28150 0.0001 -
0.9788 28200 0.0001 -
0.9806 28250 0.0001 -
0.9823 28300 0.0001 -
0.9840 28350 0.0001 -
0.9858 28400 0.0001 -
0.9875 28450 0.0001 -
0.9892 28500 0.0001 -
0.9910 28550 0.0001 -
0.9927 28600 0.0001 -
0.9944 28650 0.0025 -
0.9962 28700 0.0001 -
0.9979 28750 0.0001 -
0.9997 28800 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.3.0+cu121
  • Datasets: 2.19.2
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for m-aliabbas1/medicare_idrak_ab

Finetuned
(247)
this model