|
--- |
|
language: ka |
|
datasets: |
|
- common_voice |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
widget: |
|
- example_title: Common Voice sample 566 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample566.flac |
|
- example_title: Common Voice sample 95 |
|
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample95.flac |
|
model-index: |
|
- name: XLSR Wav2Vec2 Georgian by Mehrdad Farahani |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice ka |
|
type: common_voice |
|
args: ka |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 43.86 |
|
|
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Georgian |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
|
|
**Requirements** |
|
```bash |
|
# requirement packages |
|
!pip install git+https://github.com/huggingface/datasets.git |
|
!pip install git+https://github.com/huggingface/transformers.git |
|
!pip install torchaudio |
|
!pip install librosa |
|
!pip install jiwer |
|
``` |
|
|
|
**Normalizer** |
|
```bash |
|
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/raw/main/normalizer.py |
|
``` |
|
|
|
**Prediction** |
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset |
|
|
|
import numpy as np |
|
import re |
|
import string |
|
|
|
import IPython.display as ipd |
|
|
|
from normalizer import normalizer |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids)[0] |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device) |
|
|
|
dataset = load_dataset("common_voice", "ka", split="test[:1%]") |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"remove_extra_space": True}, |
|
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) |
|
) |
|
|
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict) |
|
|
|
max_items = np.random.randint(0, len(result), 20).tolist() |
|
for i in max_items: |
|
reference, predicted = result["sentence"][i], result["predicted"][i] |
|
print("reference:", reference) |
|
print("predicted:", predicted) |
|
print('---') |
|
``` |
|
|
|
**Output:** |
|
```text |
|
reference: แแ แแแแแแแขแแแแกแแก แแฃแจแ แกแแฅแแ แแแแแแก แแ แฃแแ แแแแแก แแแแแแ แแขแแฃแ แแแซแ แแแแแแแก แแ แแแขแแจแ แแแฌแแแ แแแแแแแก แแฅแขแแฃแ แ แแฎแแ แแแแญแแ แ แแงแ |
|
predicted: แแ แแแแแแแขแ แแแกแแก แแฃแจแ แกแแฅแแ แแแแแแก แแ แฃแแ แแแแแก แแแแแแ แแขแแฃแ แแแซแ แแแแแแแก แแ แแแขแแจแ แแแฌแแแ แแแแแแแก แแฅแขแแฃแ แ แแฎแแ แแแแญแแ แ แแงแ |
|
--- |
|
reference: แจแแกแแซแแแแแแแ แแแกแ แแแแแแแแ แแ แแกแแฎแฃแ แแแแแแแ แแแแแฅแชแแแ |
|
predicted: แจแแกแแซแแแแแแแ แแแกแ แแแแแแแแแ แแ แแกแแฎแฃแ แแแแแแแ แแแแแฅแชแแแ |
|
--- |
|
reference: แแก แแแแแกแแฎแฃแแแแแแ แแฆแแแญแแแแ แแงแ แแแกแแแแแก แแแแ แแแแแ แแแแกแ แแ แแแคแแแแแก แแแญแแแแแ |
|
predicted: แแก แแแแแกแแฎแฃแแแแแแ แแฆแแแญแแแแ แแงแ แแแกแแแแแก แแแแ แแแแแ แแแแกแ แแ แแแคแแแแแก แแแญแแแแแ |
|
--- |
|
reference: แฏแแแแ แแฅแ แแก แแแแแฃแกแแกแ แแ แแแแแแกแแฎแแแแแ แแแแแแแก แแแแแแแชแแแแ แแแแฆแ |
|
predicted: แฏแแแ แแแฅแ แแก แแแแแฃแกแแกแ แแ แแแแแแกแแฎแแแแแ แแแแแแแก แแแแแแแชแแแแ แแแแฆแ |
|
--- |
|
reference: แจแแแแแแแจแ แกแแฅแแแแฅแ แแแแแแแแแแ แกแแ แแแแแ แแแแแแแแแแแ แแแแแแแแแ แแแแแแ แแ แฌแแแแแแ แคแแแแ |
|
predicted: แจแแแแฆแแแจแ แกแแฅแแแแฅแ แแแแแแแแแแ แกแแ แแแแแ แแแแแแแแแแแ แแแแแแแแ แแแแแแ แแ แฌแแแแแแ แคแแแแ |
|
--- |
|
reference: แแแ แแแกแ แแแฃแแแแจแแ แแ แแแ แแแแแก แแ แแ แ แแแแก แแแแแแแแแแแจแ แแกแแแ แแฃแจแแแแแแแ แแฆแแแจแแฃแแ แกแชแแแแก แแแแแฎแแแ แแแแแแแแแ |
|
predicted: แแแ แแแจแ แแ แฃแแแแจแแ แแ แแแ แแแแแก แแ แแ แแแแแก แแแแแแแแแแแจแ แแกแแแ แแฃแจแแแแแแแแ แแฆแแแจแแฃแแแก แฉแแแแก แแแแแฎแแแแแ แแแแแแแแจแ |
|
--- |
|
reference: แแแแแแแ แแแแแ แแแแแขแแก แแแแแแชแแแก แแแแแ แแ แแแแแแ แแกแขแฃแแ แแแ แขแแแก แแแแแ แ แฏแแ แแแ แแแ แแแแ |
|
predicted: แแแแแแแ แแแแแ แแแแแขแแก แแแแแแชแแแก แแแแแ แแ แแแแแฃแ แแกแขแฃแแ แแแ แขแแแก แแแแแ แ แฏแแ แแแ แแแ แแแแ |
|
--- |
|
reference: แแ แ |
|
predicted: แแ แ |
|
--- |
|
reference: แแแก แจแแแแแ แแแ แแแแแฅแขแแแแก แแฃแแแแแ แฌแแแ แแ |
|
predicted: แแแก แจแแแแแ แแแ แแแแแฅแขแแแแก แคแฃแ แแแแ แฌแแแ แแ |
|
--- |
|
reference: แแแแ แแแแฏแแแฃแ แคแแแแกแแคแแแก แจแแแซแแแแ แแแแแแฃแแแแแ แ แฃแกแแแแก แกแแแแแแแ แแแฆแแแฌแ แฐแแแแแ แฏแแแแแ |
|
predicted: แแแแ แแแแแฏแแแแ แคแแแแกแแคแแแก แจแแแซแแแแ แแแแแแฃแแแแแ แ แฃแกแแแแก แกแแแแแแแ แแแฆแแแฌแ แฐแแแแแ แฏแแแแแ |
|
--- |
|
reference: แแ แแแฅแกแจแ แฏแแ แแแแก แแแแแแฃ แฐแงแแคแก แแแแญแแ แฅแฃแฉแแแก แแฆแแแกแแแแแ แแ แแแกแแแแแ แแแฌแแแแแแ |
|
predicted: แ แแแแจแ แแแ แแแแฌ แแแแแแ แแแคแก แแแ แแแแคแฃแ แฅแแแก แแฆแแแกแแแแแ แแ แแแกแแแแแ แแแฌแแแแแแ |
|
--- |
|
reference: แฐแแแ แ แแ แแก แแแแแแแแแก แแก แซแแ แแแแแ แฌแงแแ แ แ แแแแแกแแช แกแแญแแ แแแแก แงแแแแ แชแแชแฎแแแ แแ แแแแแแแ |
|
predicted: แแ แ แแ แแก แฏแแแฃแแแแแกแแก แซแแ แแแแแ แฌแงแแ แ แ แแแแแกแแช แกแแญแแ แแแแแก แงแแแแ แชแแชแฎแแแ แแ แแแแแแแ |
|
--- |
|
reference: แฏแแฃแคแ แฃแแแขแแกแฌแแแแ แแกแ แฃแแแแก แแแแแฃแกแแแแก แแแแ แแก แกแแแฆแแ แแแก |
|
predicted: แฏแแฃแคแแฃแแแขแแกแฌแแแแ แแกแ แฃแแแแก แแแแแฃแกแแแแก แแแแ แแก แกแแแ แแ แแแก |
|
--- |
|
reference: แแแแแแแแ แแฃแแแแแแ แชแแแแแแแ แจแแกแแซแแแแแแแแแแก แคแแ แแแแแจแ แแแแฆแ แชแแแแ แแ แแฎแแแ แแแคแแ แแแชแแ |
|
predicted: แแแแแแแแ แแฃแแแแแ แชแแแแแแแ แจแแกแแซแแแแแแแแแแก แคแแ แแแแแจแ แแแแฆแ แชแแขแแ แแ แแฎแแแ แแแคแแ แแแชแแ |
|
--- |
|
reference: แแ แแแแแก แ แฌแแแแแ แ แแแแแ แฏแแฃแคแแช แแแแแแ แฏแแแแแ แแแแแ แฌแแแก แแแแซแแแแ แกแแฃแฎแแ แแ แแแ แแฅแ แแ แแแแแแแแแแแ |
|
predicted: แแ แแแ แแก แ แฌแแแแแ แ แแแแแแฏแแฃแคแแก แแแแแแ แฏแแแแแ แแแแแแญแแแก แแแแซแแแแ แกแแฃแงแแแขแแแแ แแฅแ แแ แแแแแแแแแแแ |
|
--- |
|
reference: แแแแ แฉแฎแแแซแแก แแแแกแแแฃแแ แแแฃแแ แฆแแแฌแแ แแแฃแซแฆแแแก แฅแฃแแแแกแแกแ แแ แ แฃแกแแแแแแแก แแแแขแ แแแแก แจแแแแฅแแแแแแแ แชแฎแแแ แแแแจแ |
|
predicted: แแแแ แฉแฎแแแซแแก แแแแกแแแฃแแ แแแฃแแ แฆแแแแฌแแ แแแแชแฎแแแก แฅแฃแแแแกแแกแ แแ แ แฃแกแแแแแแแก แแแแขแ แแแแก แจแแแแฅแแแแแแแ แชแฎแแแ แแแแจแ |
|
--- |
|
reference: แแแ แกแแแ แแแแแแฅแขแแกแแแ แจแแแแแแ |
|
predicted: แแแ แกแแแ แแแแแแแแก แแแ แจแแแแแแ |
|
--- |
|
reference: แคแแ แแแ แกแแ แแฅแแแแแแก แฌแแแแแแแแ |
|
predicted: แแแแชแ แ แแฅแแแแแแก แแแแแแแแ |
|
--- |
|
reference: แแแแ แแแแแแแ แแแแฃแแแฃแกแจแ แแฐแแแแจแ |
|
predicted: แแแแ แแแแแแแแ แแแแฃแแแฃแกแจแ แแฎแแแแแจแ |
|
--- |
|
reference: แแจแแแแแแแแแกแแแแแก แแแแแแงแ แแแแแแ แงแแคแแแ แแแ แแแแ แขแแก แ แแแแแจแ |
|
predicted: แจแแแแแแแแแกแแแแแก แแแแแแงแ แแแแแแ แงแแคแแแ แแแ แแแแ แขแแก แ แแแแแจแ |
|
--- |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Georgian test data of Common Voice. |
|
|
|
```python |
|
import librosa |
|
import torch |
|
import torchaudio |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
from datasets import load_dataset, load_metric |
|
|
|
import numpy as np |
|
import re |
|
import string |
|
|
|
from normalizer import normalizer |
|
|
|
|
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array = speech_array.squeeze().numpy() |
|
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000) |
|
|
|
batch["speech"] = speech_array |
|
return batch |
|
|
|
|
|
def predict(batch): |
|
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
batch["predicted"] = processor.batch_decode(pred_ids)[0] |
|
return batch |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian") |
|
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device) |
|
|
|
dataset = load_dataset("common_voice", "ka", split="test") |
|
dataset = dataset.map( |
|
normalizer, |
|
fn_kwargs={"remove_extra_space": True}, |
|
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path'])) |
|
) |
|
|
|
dataset = dataset.map(speech_file_to_array_fn) |
|
result = dataset.map(predict) |
|
|
|
wer = load_metric("wer") |
|
|
|
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"]))) |
|
``` |
|
|
|
|
|
**Test Result**: |
|
- WER: 43.86% |
|
|
|
|
|
## Training & Report |
|
The Common Voice `train`, `validation` datasets were used for training. |
|
|
|
You can see the training states [here](https://wandb.ai/m3hrdadfi/wav2vec2_large_xlsr_ka/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Georgian--Vmlldzo1OTQyMzk?accessToken=ytf7jseje66a3byuheh68o6a7215thjviscv5k2ewl5hgq9yqr50yxbko0bnf1d3) |
|
|
|
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Georgian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb) |
|
|
|
## Questions? |
|
Post a Github issue on the [Wav2Vec](https://github.com/m3hrdadfi/wav2vec) repo. |