metadata
language: fa
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
datasets:
- common_voice
widget:
- example_title: Common Voice sample 1
src: >-
https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample1.flac
- example_title: Common Voice sample 2978
src: >-
https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample2978.flac
- example_title: Common Voice sample 5168
src: >-
https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3/resolve/main/sample5168.flac
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: XLSR Wav2Vec2 Persian (Farsi) V3 by Mehrdad Farahani
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice fa
type: common_voice
args: fa
metrics:
- type: wer
value: 10.36
name: Test WER
Wav2Vec2-Large-XLSR-53-Persian V3
Usage
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Persian (Farsi) using Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.
Requirements
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
!pip install parsivar
!pip install num2fawords
Normalizer
# Normalizer
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/dictionary.py
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/"wav2vec2-large-xlsr-persian-v3/raw/main/normalizer.py
Downloading data
wget https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/fa.tar.gz
tar -xzf fa.tar.gz
rm -rf fa.tar.gz
Cleaning
from normalizer import normalizer
def cleaning(text):
if not isinstance(text, str):
return None
return normalizer({"sentence": text}, return_dict=False)
data_dir = "/content/cv-corpus-6.1-2020-12-11/fa"
test = pd.read_csv(f"{data_dir}/test.tsv", sep=" ")
test["path"] = data_dir + "/clips/" + test["path"]
print(f"Step 0: {len(test)}")
test["status"] = test["path"].apply(lambda path: True if os.path.exists(path) else None)
test = test.dropna(subset=["path"])
test = test.drop("status", 1)
print(f"Step 1: {len(test)}")
test["sentence"] = test["sentence"].apply(lambda t: cleaning(t))
test = test.dropna(subset=["sentence"])
print(f"Step 2: {len(test)}")
test = test.reset_index(drop=True)
print(test.head())
test = test[["path", "sentence"]]
test.to_csv("/content/test.csv", sep=" ", encoding="utf-8", index=False)
Prediction
import numpy as np
import pandas as pd
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import IPython.display as ipd
model_name_or_path = "m3hrdadfi/wav2vec2-large-xlsr-persian-v3"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(model_name_or_path, device)
processor = Wav2Vec2Processor.from_pretrained(model_name_or_path)
model = Wav2Vec2ForCTC.from_pretrained(model_name_or_path).to(device)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, processor.feature_extractor.sampling_rate)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(
batch["speech"],
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True
)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
return batch
dataset = load_dataset("csv", data_files={"test": "/content/test.csv"}, delimiter=" ")["test"]
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict, batched=True, batch_size=4)
WER Score
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
Output
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
reference: ماجرا رو براش تعریف کردم اون گفت مریم اگه میدونی پسر خوبیه خب چه اشکالی داره باهاش بیشتر اشنا بشو
predicted: ماجرا رو براش تعریف کردم اون گفت مریم اگه میدونی پسر خوبیه خب چه اشکالی داره باهاش بیشتر اشنا بشو
---
reference: بیا پایین تو اجازه نداری بری اون بالا
predicted: بیا پایین تو اجازه نداری بری اون بالا
---
reference: هر روز یک دو مداد کش می رفتتم تااین که تا پایان ترم از تمامی دوستانم مداد برداشته بودم
predicted: هر روز یک دو مداد کش می رفتم تااین که تا پایین ترم از تمامی دوستان و مداد برداشته بودم
---
reference: فکر میکنی آروم میشینه
predicted: فکر میکنی آروم میشینه
---
reference: هرکسی با گوشی هوشمند خود میتواند با کایلا متصل گردد در یک محدوده مکانی
predicted: هرکسی با گوشی هوشمند خود میتواند با کایلا متصل گردد در یک محدوده مکانی
---
reference: برو از مهرداد بپرس
predicted: برو از مهرداد بپرس
---
reference: می خواهم شما را با این قدمها آشنا کنم
predicted: می خواهم شما را با این قدمها آشنا کنم
---
reference: میدونم یه روز دوباره می تونم تو رو ببینم
predicted: میدونم یه روز دوباره می تونم تو رو ببینم
---
reference: بسیار خوب خواهد بود دعوت او را بپذیری
predicted: بسیار خوب خواهد بود دعوت او را بپذیری
---
reference: بهت بگن آشغالی خوبه
predicted: بهت بگن آشغالی خوبه
---
reference: چرا معاشرت با هم ایمانان ما را محفوظ نگه میدارد
predicted: چرا معاشرت با هم ایمانان آ را م حفوظ نگه میدارد
---
reference: بولیوی پس از گویان فقیرترین کشور آمریکای جنوبی است
predicted: بولیوی پس از گویان فقیرترین کشور آمریکای جنوبی است
---
reference: بعد از مدتی اینکار برایم عادی شد
predicted: بعد از مدتی اینکار برایم عادو شد
---
reference: به نظر اون هم همینطوره
predicted: به نظر اون هم همینطوره
---
reference: هیچ مایونز ی دارید
predicted: هیچ مایونز ی دارید
---
reference: هیچ یک از انان کاری به سنگ نداشتند
predicted: هیچ شک از انان کاری به سنگ نداشتند
---
reference: می خواهم کمی کتاب شعر ببینم
predicted: می خواهم کتاب شعر ببینم
---
reference: همین شوهر فهیمه مگه نمی گفتی فرمانده بوده کو
predicted: همین شوهر فهیمه بینامی گفتی فهمانده بود کو
---
reference: اون جاها کسی رو نمیبینی که تو دستش کتاب نباشه
predicted: اون جاها کسی رو نمیبینی که تو دستش کتاب نباشه
---
reference: زندان رفتن من در این سالهای اخیر برام شانس بزرگی بود که معما و مشکل چندین سالهام را حل کرد
predicted: زندان رفتن من در این سالها اخی براب شانس بزرگی بود که معما و مشکل چندین سالهام را حل کرد
---
Evaluation
Test Result:
- WER: 10.36%