metadata
license: mit
🍰 Tiny AutoEncoder for Stable Diffusion
TAESD is very tiny autoencoder which uses the same "latent API" as Stable Diffusion's VAE. TAESD is useful for real-time previewing of the SD generation process.
Comparison on my laptop:
This repo contains .safetensors
versions of the TAESD weights.
For SDXL, use TAESDXL instead (the SD and SDXL VAEs are incompatible).
Using in 🧨 diffusers
import torch
from diffusers import DiffusionPipeline, AutoencoderTiny
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16
)
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "slice of delicious New York-style berry cheesecake"
image = pipe(prompt, num_inference_steps=25).images[0]
image.save("cheesecake.png")