manibt1993's picture
Training complete
47fc0f6 verified
metadata
license: apache-2.0
base_model: dslim/distilbert-NER
tags:
  - generated_from_trainer
datasets:
  - transformer_dataset_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: huner_ncbi_disease_dslim
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: transformer_dataset_ner
          type: transformer_dataset_ner
          config: ncbi_disease
          split: validation
          args: ncbi_disease
        metrics:
          - name: Precision
            type: precision
            value: 0.8325183374083129
          - name: Recall
            type: recall
            value: 0.8653113087674714
          - name: F1
            type: f1
            value: 0.8485981308411215
          - name: Accuracy
            type: accuracy
            value: 0.9849891909996041

huner_ncbi_disease_dslim

This model is a fine-tuned version of dslim/distilbert-NER on the transformer_dataset_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1484
  • Precision: 0.8325
  • Recall: 0.8653
  • F1: 0.8486
  • Accuracy: 0.9850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1243 1.0 667 0.0669 0.7013 0.8412 0.7649 0.9787
0.0512 2.0 1334 0.0656 0.7825 0.8412 0.8108 0.9818
0.0221 3.0 2001 0.0744 0.7908 0.8501 0.8194 0.9822
0.0107 4.0 2668 0.1022 0.7940 0.8475 0.8199 0.9808
0.008 5.0 3335 0.1055 0.7818 0.8602 0.8191 0.9816
0.0057 6.0 4002 0.1173 0.8067 0.8590 0.832 0.9830
0.0027 7.0 4669 0.1188 0.8188 0.8501 0.8342 0.9834
0.0022 8.0 5336 0.1229 0.8080 0.8450 0.8261 0.9826
0.0019 9.0 6003 0.1341 0.8007 0.8526 0.8258 0.9834
0.0019 10.0 6670 0.1360 0.8045 0.8628 0.8326 0.9822
0.0011 11.0 7337 0.1376 0.8163 0.8640 0.8395 0.9838
0.0008 12.0 8004 0.1447 0.8007 0.8577 0.8282 0.9833
0.0006 13.0 8671 0.1381 0.8139 0.8615 0.8370 0.9839
0.0005 14.0 9338 0.1398 0.8297 0.8666 0.8477 0.9843
0.0004 15.0 10005 0.1404 0.8232 0.8640 0.8431 0.9842
0.0003 16.0 10672 0.1486 0.8329 0.8551 0.8439 0.9838
0.0 17.0 11339 0.1469 0.8114 0.8691 0.8393 0.9837
0.0002 18.0 12006 0.1500 0.8297 0.8602 0.8447 0.9843
0.0001 19.0 12673 0.1489 0.8315 0.8653 0.8481 0.9849
0.0 20.0 13340 0.1484 0.8325 0.8653 0.8486 0.9850

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1