manuel-couto-pintos's picture
Add new SentenceTransformer model.
6977cf5 verified
metadata
base_model: distilbert/distilroberta-base
datasets:
  - sentence-transformers/all-nli
language:
  - en
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10000
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: A man dressed in yellow rescue gear walks in a field.
    sentences:
      - A person messes with some papers.
      - The man is outdoors.
      - The man is bowling.
  - source_sentence: >-
      A young woman tennis player dressed in black carries many tennis balls on
      her racket.
    sentences:
      - A young woman tennis player have many tennis balls.
      - Two men are fishing.
      - A young woman never wears white dress.
  - source_sentence: An older gentleman enjoys a scenic stroll through the countryside.
    sentences:
      - A pirate boards the spaceship.
      - A man walks the countryside.
      - Girls standing at a whiteboard in front of class.
  - source_sentence: >-
      A kid in a red and black coat is laying on his back in the snow with his
      arm in the air and a red sled is next to him.
    sentences:
      - It is a cold day.
      - A girl with her hands in a tub.
      - The kid is on a sugar high.
  - source_sentence: A young boy playing in the grass.
    sentences:
      - A woman in a restaurant.
      - The boy is in the sand.
      - There is a child in the grass.
model-index:
  - name: SentenceTransformer based on distilbert/distilroberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.7472631211742428
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7816148643047378
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7462864148382337
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7562943126527191
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7467258010434259
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7551090266044774
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4680868285301815
            name: Pearson Dot
          - type: spearman_dot
            value: 0.48375727668644103
            name: Spearman Dot
          - type: pearson_max
            value: 0.7472631211742428
            name: Pearson Max
          - type: spearman_max
            value: 0.7816148643047378
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.7145148981321872
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7188984625066266
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7140610465322241
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7047733039592011
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7146251167393373
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7050375569985633
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4319747161819866
            name: Pearson Dot
          - type: spearman_dot
            value: 0.429842682990914
            name: Spearman Dot
          - type: pearson_max
            value: 0.7146251167393373
            name: Pearson Max
          - type: spearman_max
            value: 0.7188984625066266
            name: Spearman Max

SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("manuel-couto-pintos/distilroberta-base-nli-v2")
# Run inference
sentences = [
    'A young boy playing in the grass.',
    'There is a child in the grass.',
    'The boy is in the sand.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7473
spearman_cosine 0.7816
pearson_manhattan 0.7463
spearman_manhattan 0.7563
pearson_euclidean 0.7467
spearman_euclidean 0.7551
pearson_dot 0.4681
spearman_dot 0.4838
pearson_max 0.7473
spearman_max 0.7816

Semantic Similarity

Metric Value
pearson_cosine 0.7145
spearman_cosine 0.7189
pearson_manhattan 0.7141
spearman_manhattan 0.7048
pearson_euclidean 0.7146
spearman_euclidean 0.705
pearson_dot 0.432
spearman_dot 0.4298
pearson_max 0.7146
spearman_max 0.7189

Training Details

Training Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli
  • Size: 10,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.38 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 12.8 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 18.02 tokens
    • max: 66 tokens
    • min: 5 tokens
    • mean: 9.81 tokens
    • max: 29 tokens
    • min: 5 tokens
    • mean: 10.37 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step loss sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - 0.6375 -
0.1266 10 2.9835 0.7807 -
0.2532 20 1.7046 0.7782 -
0.3797 30 1.6654 0.7847 -
0.5063 40 1.7359 0.7900 -
0.6329 50 1.6403 0.7864 -
0.7595 60 1.7291 0.7820 -
0.8861 70 1.7057 0.7816 -
1.0 79 - - 0.7189

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.1
  • PyTorch: 2.0.1+cu117
  • Accelerate: 0.34.0
  • Datasets: 2.15.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}