File size: 64,937 Bytes
5a5a8f1 50228f4 9a0e226 50228f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
---
license: unknown
---
## Merging models like lego blocks using ddare and ties
If you want to fine-tune, here's an example Unsloth fine tuning guide for:
- [Alpaca + TinyLlama + RoPE Scaling full example.ipynb](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing#scrollTo=LjY75GoYUCB8)
## How do I generate my own model merges?
The code below merges the following HuggingFace TinyLlama models:
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
- Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct
- Doctor-Shotgun/TinyLlama-1.1B-32k
- Tensoic/TinyLlama-1.1B-3T-openhermes
- Josephgflowers/TinyLlama-3T-Cinder-v1.3
```python3
import transformers
import torch
import logging
from ddare.merge import merge_tensors
from ddare.tensor import dare_ties_sparsification, relative_norm, divide_tensor_into_sets
from ddare.util import get_device
import re
from typing import Dict, Tuple, List
logging.basicConfig(level=logging.INFO)
log = logging.getLogger(__name__)
def get_models(
models: List[str],
trust_remote_code: bool,
):
config = {
'torch_dtype': torch.float16,
'low_cpu_mem_usage': False,
'trust_remote_code': trust_remote_code,
}
loaded_models = []
num_models = len(models)
for midx, model_path in enumerate(models):
log.info(
f"loading model={midx}/{num_models} "
f"model={model_path} "
)
loaded_models.append(
transformers.AutoModelForCausalLM.from_pretrained(
model_path,
**config
)
)
return loaded_models
def pm(
model,
):
keys = model.state_dict().keys()
log.info(f"model keys={len(keys)}")
for i, k in enumerate(keys):
tensor = model.state_dict()[k]
log.info(
f"{i:3d} {k} shape={tensor.shape} "
f"type={tensor.dtype} dev={tensor.device} "
f"contig={tensor.is_contiguous()}")
def run_text_test(
model,
model_path,
device: str,
question: str,
):
base_model = model.to(device)
log.info(
f"loading model={model_path}"
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
torch_dtype=torch.float16)
inputs = tokenizer(
question,
return_tensors="pt"
).to("cuda")
with torch.backends.cuda.sdp_kernel(
enable_flash=True,
enable_math=False,
enable_mem_efficient=False
):
outputs = base_model.generate(**inputs)
log.info(tokenizer.decode(outputs[0], skip_special_tokens=True))
base_model = base_model.to("cpu")
def get_layer_type(
key: str
) -> Tuple[int, str]:
matcher = re.compile(r"model.layers.(\d+).(.+)")
m = matcher.match(key)
if m is None:
if "model.norm.weight" == key:
return -1, "norm"
if "model.embed_tokens.weight" == key:
return -1, "embed"
if "lm_head.weight" == key:
return -1, "head"
log.info(f"Unknown key {key}")
return -1, "unknown"
return int(m.group(1)), m.group(2)
def merge_model_with_ties(
models: List[str],
model_dst: str,
trust_remote_code: bool = True
):
models = get_models(
models=models,
trust_remote_code=trust_remote_code,
)
config = {}
result_dict: Dict[str, torch.Tensor] = {}
device = get_device()
keys = models[0].state_dict().keys()
num_keys = len(keys)
for k in keys:
block, layer_type = get_layer_type(k)
m0: torch.Tensor = models[0].state_dict()[k]
result = m0.clone()
sets = divide_tensor_into_sets(tensor=m0, n_sets=4)
# get the src layers to merge
m = [
models[1].state_dict()[k],
models[2].state_dict()[k],
models[3].state_dict()[k],
]
# build a ratio
ratio = {
'to_q': 0.0,
'to_k': 0.0,
'to_v': 0.0,
}.get(layer_type, .5)
norm_ratio = 0.68
log.info(
f"model={k} {num_keys} shape={m0.shape} "
f"dtype={m0.dtype} {m0.device} "
f"raio={ratio} "
f"contig={m0.is_contiguous()} "
f"norm={norm_ratio}")
# for all tensors
for i, tensor in enumerate(m):
if layer_type == "to_k":
# Get to_q key
q_base = models[0].state_dict()[k.replace("to_k", "to_q")]
q_merge = models[i].state_dict()[k.replace("to_k", "to_q")]
scale = relative_norm(q_merge, q_base)
tensor = tensor.to(device) / scale
del scale
elif layer_type == "to_q":
scale = relative_norm(tensor, m0)
tensor = tensor.to(device) * scale
del scale
slice_mask = (
sets == i
).bool()
new_tensor = dare_ties_sparsification(
model_a_param=m0,
model_b_param=tensor,
drop_rate=norm_ratio,
ties="sum",
rescale="off",
device=device,
**config)
new_tensor = merge_tensors("slerp", m0, tensor, ratio)
result = torch.where(slice_mask, new_tensor, result)
del new_tensor, slice_mask
result_dict[k] = result
# end of merge
log.info(
f"{config} - done merge saving to file: {model_dst}"
)
out_model = (
transformers.AutoModelForCausalLM.from_pretrained(
model_dst,
**config
)
)
out_model.state_dict = lambda: result_dict
out_model.save_pretrained(model_dst)
def run():
log.info("start")
model_src = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
model_dst = "matlok/tinyllama-cinder-openhermes-32k"
config = {
'torch_dtype': torch.float16,
'low_cpu_mem_usage': False,
'trust_remote_code': True,
}
models = [
model_src,
"Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct",
"Doctor-Shotgun/TinyLlama-1.1B-32k",
"Tensoic/TinyLlama-1.1B-3T-openhermes",
"Josephgflowers/TinyLlama-3T-Cinder-v1.3",
]
merge_model_with_ties(
models=models,
model_dst=model_dst
)
log.info(f"loading newly-created file: {model_dst}")
model = transformers.AutoModelForCausalLM.from_pretrained(
model_dst,
**config
)
pm(model=model)
log.info(f"done loading new model: {model} file: {model_dst}")
if __name__ == "__main__":
run()
```
### Logs
Here's hte logs
```
Total VRAM 12282 MB, total RAM 85434 MB
Set vram state to: NORMAL_VRAM
Device: cuda:0 NVIDIA GeForce RTX 4070 Ti : native
VAE dtype: torch.bfloat16
INFO:__main__:start
INFO:__main__:loading model=0/5 model=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
INFO:__main__:loading model=1/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct
INFO:__main__:loading model=2/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k
INFO:__main__:loading model=3/5 model=Tensoic/TinyLlama-1.1B-3T-openhermes
INFO:__main__:loading model=4/5 model=Josephgflowers/TinyLlama-3T-Cinder-v1.3
INFO:__main__:model=model.embed_tokens.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.0.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.1.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.2.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.3.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.4.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.5.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.6.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.7.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.8.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.9.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.10.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.11.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.12.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.13.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.14.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.15.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.16.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.17.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.18.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.19.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.20.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.layers.21.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=model.norm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:model=lm_head.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
INFO:__main__:{} - done merge saving to file: matlok/tinyllama-cinder-openhermes-32k
config.json: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 724/724 [00:00<00:00, 6.15MB/s]
model.safetensors: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2.20G/2.20G [00:57<00:00, 38.0MB/s]
generation_config.json: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 133/133 [00:00<00:00, 1.82MB/s]
INFO:__main__:loading newly-created file: matlok/tinyllama-cinder-openhermes-32k
INFO:__main__:model keys=201
INFO:__main__: 0 model.embed_tokens.weight shape=torch.Size([32000, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 1 model.layers.0.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 2 model.layers.0.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 3 model.layers.0.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 4 model.layers.0.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 5 model.layers.0.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 6 model.layers.0.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 7 model.layers.0.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 8 model.layers.0.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 9 model.layers.0.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 10 model.layers.1.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 11 model.layers.1.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 12 model.layers.1.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 13 model.layers.1.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 14 model.layers.1.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 15 model.layers.1.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 16 model.layers.1.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 17 model.layers.1.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 18 model.layers.1.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 19 model.layers.2.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 20 model.layers.2.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 21 model.layers.2.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 22 model.layers.2.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 23 model.layers.2.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 24 model.layers.2.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 25 model.layers.2.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 26 model.layers.2.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 27 model.layers.2.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 28 model.layers.3.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 29 model.layers.3.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 30 model.layers.3.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 31 model.layers.3.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 32 model.layers.3.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 33 model.layers.3.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 34 model.layers.3.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 35 model.layers.3.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 36 model.layers.3.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 37 model.layers.4.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 38 model.layers.4.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 39 model.layers.4.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 40 model.layers.4.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 41 model.layers.4.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 42 model.layers.4.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 43 model.layers.4.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 44 model.layers.4.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 45 model.layers.4.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 46 model.layers.5.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 47 model.layers.5.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 48 model.layers.5.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 49 model.layers.5.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 50 model.layers.5.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 51 model.layers.5.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 52 model.layers.5.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 53 model.layers.5.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 54 model.layers.5.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 55 model.layers.6.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 56 model.layers.6.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 57 model.layers.6.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 58 model.layers.6.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 59 model.layers.6.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 60 model.layers.6.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 61 model.layers.6.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 62 model.layers.6.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 63 model.layers.6.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 64 model.layers.7.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 65 model.layers.7.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 66 model.layers.7.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 67 model.layers.7.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 68 model.layers.7.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 69 model.layers.7.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 70 model.layers.7.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 71 model.layers.7.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 72 model.layers.7.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 73 model.layers.8.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 74 model.layers.8.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 75 model.layers.8.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 76 model.layers.8.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 77 model.layers.8.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 78 model.layers.8.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 79 model.layers.8.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 80 model.layers.8.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 81 model.layers.8.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 82 model.layers.9.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 83 model.layers.9.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 84 model.layers.9.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 85 model.layers.9.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 86 model.layers.9.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 87 model.layers.9.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 88 model.layers.9.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 89 model.layers.9.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 90 model.layers.9.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 91 model.layers.10.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 92 model.layers.10.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 93 model.layers.10.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 94 model.layers.10.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 95 model.layers.10.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 96 model.layers.10.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 97 model.layers.10.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 98 model.layers.10.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__: 99 model.layers.10.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:100 model.layers.11.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:101 model.layers.11.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:102 model.layers.11.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:103 model.layers.11.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:104 model.layers.11.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:105 model.layers.11.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:106 model.layers.11.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:107 model.layers.11.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:108 model.layers.11.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:109 model.layers.12.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:110 model.layers.12.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:111 model.layers.12.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:112 model.layers.12.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:113 model.layers.12.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:114 model.layers.12.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:115 model.layers.12.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:116 model.layers.12.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:117 model.layers.12.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:118 model.layers.13.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:119 model.layers.13.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:120 model.layers.13.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:121 model.layers.13.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:122 model.layers.13.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:123 model.layers.13.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:124 model.layers.13.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:125 model.layers.13.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:126 model.layers.13.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:127 model.layers.14.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:128 model.layers.14.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:129 model.layers.14.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:130 model.layers.14.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:131 model.layers.14.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:132 model.layers.14.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:133 model.layers.14.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:134 model.layers.14.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:135 model.layers.14.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:136 model.layers.15.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:137 model.layers.15.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:138 model.layers.15.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:139 model.layers.15.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:140 model.layers.15.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:141 model.layers.15.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:142 model.layers.15.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:143 model.layers.15.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:144 model.layers.15.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:145 model.layers.16.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:146 model.layers.16.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:147 model.layers.16.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:148 model.layers.16.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:149 model.layers.16.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:150 model.layers.16.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:151 model.layers.16.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:152 model.layers.16.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:153 model.layers.16.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:154 model.layers.17.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:155 model.layers.17.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:156 model.layers.17.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:157 model.layers.17.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:158 model.layers.17.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:159 model.layers.17.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:160 model.layers.17.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:161 model.layers.17.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:162 model.layers.17.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:163 model.layers.18.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:164 model.layers.18.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:165 model.layers.18.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:166 model.layers.18.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:167 model.layers.18.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:168 model.layers.18.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:169 model.layers.18.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:170 model.layers.18.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:171 model.layers.18.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:172 model.layers.19.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:173 model.layers.19.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:174 model.layers.19.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:175 model.layers.19.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:176 model.layers.19.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:177 model.layers.19.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:178 model.layers.19.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:179 model.layers.19.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:180 model.layers.19.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:181 model.layers.20.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:182 model.layers.20.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:183 model.layers.20.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:184 model.layers.20.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:185 model.layers.20.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:186 model.layers.20.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:187 model.layers.20.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:188 model.layers.20.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:189 model.layers.20.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:190 model.layers.21.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:191 model.layers.21.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:192 model.layers.21.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:193 model.layers.21.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:194 model.layers.21.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:195 model.layers.21.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:196 model.layers.21.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
INFO:__main__:197 model.layers.21.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:198 model.layers.21.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:199 model.norm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:200 lm_head.weight shape=torch.Size([32000, 2048]) type=torch.float16 dev=cpu contig=True
INFO:__main__:done loading new model: LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(32000, 2048)
(layers): ModuleList(
(0-21): 22 x LlamaDecoderLayer(
(self_attn): LlamaSdpaAttention(
(q_proj): Linear(in_features=2048, out_features=2048, bias=False)
(k_proj): Linear(in_features=2048, out_features=256, bias=False)
(v_proj): Linear(in_features=2048, out_features=256, bias=False)
(o_proj): Linear(in_features=2048, out_features=2048, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=2048, out_features=5632, bias=False)
(up_proj): Linear(in_features=2048, out_features=5632, bias=False)
(down_proj): Linear(in_features=5632, out_features=2048, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=2048, out_features=32000, bias=False)
) file: matlok/tinyllama-cinder-openhermes-32k
real 1m18.070s
user 2m10.228s
sys 0m14.040s
```
Note: code sample above was modified from [this very helpful GitHub gist](https://gist.github.com/maldevide/08829eada04ad9bd78e46c1a3787d42b)
|