Takeshi Kojima
Update README.md
1c3d608
|
raw
history blame
3.05 kB
---
license: cc-by-nc-4.0
---
# tsubaki-10b-instruction-sft
# Overview
This repository provides a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters.
* **Library**
The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox).
* **Model architecture**
A 36-layer, 4864-hidden-size transformer-based language model.
* **Pre-training**
The model was trained on around **600B** tokens from a mixture of the following corpora
- [Japanese C4](https://huggingface.co/datasets/mc4)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
* **Instruction-supervised-finetuning**
The model was finetuned on a subset records from a mixture of the following dataset
- [Alpaca (English)](https://github.com/gururise/AlpacaDataCleaned/blob/main/alpaca_data_cleaned.json)
- [Alpaca (Japanese translation)](https://github.com/shi3z/alpaca_ja/blob/main/alpaca_cleaned_ja.json)
- [Flan 2021](https://huggingface.co/datasets/conceptofmind/flan2021_submix_original)
- [Flan CoT](https://huggingface.co/datasets/conceptofmind/cot_submix_original)
- [Flan Dialog](https://huggingface.co/datasets/conceptofmind/dialog_submix_original)
* **Model Series**
| Variant | Link |
| :-- | :--|
| tsubaki-10b-instruction-sft | https://huggingface.co/Kojima777/tsubaki-10b-instruction-sft |
| tsubaki-10b | https://huggingface.co/Kojima777/tsubaki-10b |
* **Authors**
Takeshi Kojima
---
# Benchmarking
* **Japanese benchmark**
- *The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.*
| Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD |
| :-- | :-- | :-- | :-- | :-- | :-- |
| tsubaki-10b-instruction-sft | 79.04 | 74.35 | 65.65 | 96.06 | 80.09 |
| tsubaki-10b | 67.27 | 65.86 | 54.19 | 84.49 | 64.54 |
---
# How to use the model
~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Kojima777/tsubaki-10b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("Kojima777/tsubaki-10b-instruction-sft")
if torch.cuda.is_available():
model = model.to("cuda")
text = "倧規樑言θͺžγƒ’デルに぀いてθͺ¬ζ˜Žγ—てください。"
text = f'δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。\n\n### ζŒ‡η€Ί:\n{text}\n\n### εΏœη­”:'
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=100,
do_sample=True,
temperature=0.6,
top_p=0.9,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
~~~~
---
# Licenese
[cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/)