|
--- |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- finetuned |
|
inference: |
|
parameters: |
|
temperature: 0.01 |
|
--- |
|
|
|
A Mistral7B Instruct (https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) |
|
Finetune using QLoRA on the docs available in https://docs.modular.com/mojo/ |
|
|
|
The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets. |
|
|
|
## Instruction format |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
import torch |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model_name = "mcysqrd/MODULARMOJO_Mistral_V1" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, |
|
use_flash_attention_2=True, |
|
max_memory={0: "24GB"}, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
return_dict=True, |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name,add_bos_token=True,trust_remote_code=True) |
|
|
|
model.config.use_cache = True |
|
def stream(user_prompt): |
|
runtimeFlag = "cuda:0" |
|
system_prompt = 'MODULAR_MOJO' |
|
B_INST, E_INST = "[INST]", "[/INST]" |
|
prompt = f"{system_prompt}{B_INST}{user_prompt.strip()}\n{E_INST}" |
|
inputs = tokenizer([prompt], return_tensors="pt").to(runtimeFlag) |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=1600) |
|
|
|
stream("""can you translate this python code to mojo to make more performant making T as struct? |
|
class T(): |
|
self.init(v:float): |
|
self.value=v |
|
|
|
def sum_objects(a:T,b:T)->T: |
|
return T(a.v+b.v)""") |
|
``` |