Whisper Medium Hindi -megha sharma

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3821
  • Wer: 18.5865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 15000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0669 3.3898 1000 0.2078 20.8512
0.0131 6.7797 2000 0.2584 20.0312
0.002 10.1695 3000 0.3048 19.2698
0.0024 13.5593 4000 0.3192 19.1429
0.0025 16.9492 5000 0.3127 19.0941
0.0008 20.3390 6000 0.3412 19.1429
0.0008 23.7288 7000 0.3438 18.3913
0.0011 27.1186 8000 0.3465 18.8501
0.001 30.5085 9000 0.3549 18.5377
0.0002 33.8983 10000 0.3551 18.0594
0.0 37.2881 11000 0.3689 18.3522
0.0 40.6780 12000 0.3721 18.3229
0.0 44.0678 13000 0.3821 18.5865

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
764M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for meg51/whisper-medium-hindi-15000-1

Finetuned
(470)
this model

Dataset used to train meg51/whisper-medium-hindi-15000-1

Evaluation results