Whisper Medium Hindi -megha sharma

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4008
  • Wer: 17.7470

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.067 3.3898 1000 0.2071 20.8024
0.0116 6.7797 2000 0.2594 19.6505
0.0032 10.1695 3000 0.2891 19.0062
0.0029 13.5593 4000 0.3075 18.9086
0.0026 16.9492 5000 0.3211 19.1722
0.0033 20.3390 6000 0.3254 18.6841
0.0014 23.7288 7000 0.3304 18.2546
0.0008 27.1186 8000 0.3422 18.4889
0.0023 30.5085 9000 0.3379 18.0886
0.0009 33.8983 10000 0.3525 18.4010
0.0006 37.2881 11000 0.3511 18.0301
0.0001 40.6780 12000 0.3651 18.1863
0.0001 44.0678 13000 0.3627 17.8446
0.0 47.4576 14000 0.3775 17.6982
0.0 50.8475 15000 0.3868 17.7079
0.0 54.2373 16000 0.3944 17.7079
0.0 57.6271 17000 0.4008 17.7470

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
764M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for meg51/whisper-medium-hindi-15000-2

Finetuned
(470)
this model

Dataset used to train meg51/whisper-medium-hindi-15000-2

Evaluation results