|
--- |
|
base_model: openai/whisper-medium |
|
datasets: |
|
- google/fleurs |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Medium Hindi -megha sharma |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Google Fleurs |
|
type: google/fleurs |
|
config: hi_in |
|
split: None |
|
args: 'config: hi, split: test' |
|
metrics: |
|
- type: wer |
|
value: 18.02030456852792 |
|
name: Wer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Medium Hindi -megha sharma |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Google Fleurs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4333 |
|
- Wer: 18.0203 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 25000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:-------:| |
|
| 0.0669 | 3.3898 | 1000 | 0.2086 | 20.9684 | |
|
| 0.0115 | 6.7797 | 2000 | 0.2637 | 19.7579 | |
|
| 0.0034 | 10.1695 | 3000 | 0.3012 | 19.6408 | |
|
| 0.0026 | 13.5593 | 4000 | 0.3179 | 19.2893 | |
|
| 0.0014 | 16.9492 | 5000 | 0.3242 | 18.7817 | |
|
| 0.0024 | 20.3390 | 6000 | 0.3348 | 19.1624 | |
|
| 0.0024 | 23.7288 | 7000 | 0.3421 | 19.7774 | |
|
| 0.0006 | 27.1186 | 8000 | 0.3511 | 18.6939 | |
|
| 0.0008 | 30.5085 | 9000 | 0.3632 | 18.8989 | |
|
| 0.0007 | 33.8983 | 10000 | 0.3600 | 18.7622 | |
|
| 0.0006 | 37.2881 | 11000 | 0.3470 | 18.4791 | |
|
| 0.0002 | 40.6780 | 12000 | 0.3548 | 18.2936 | |
|
| 0.0001 | 44.0678 | 13000 | 0.3711 | 18.0594 | |
|
| 0.0006 | 47.4576 | 14000 | 0.3733 | 18.2839 | |
|
| 0.0003 | 50.8475 | 15000 | 0.3766 | 18.1667 | |
|
| 0.0 | 54.2373 | 16000 | 0.3745 | 18.0203 | |
|
| 0.0 | 57.6271 | 17000 | 0.3914 | 17.8739 | |
|
| 0.0 | 61.0169 | 18000 | 0.4003 | 17.9032 | |
|
| 0.0 | 64.4068 | 19000 | 0.4081 | 17.8641 | |
|
| 0.0 | 67.7966 | 20000 | 0.4153 | 17.8544 | |
|
| 0.0 | 71.1864 | 21000 | 0.4219 | 17.8544 | |
|
| 0.0 | 74.5763 | 22000 | 0.4281 | 18.0105 | |
|
| 0.0 | 77.9661 | 23000 | 0.4333 | 18.0203 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|