Edit model card

ChatGPT Prompt Generator

This model is a fine-tuned version of BART-large on a ChatGPT prompts dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.8329
  • Validation Loss: 2.5015
  • Epoch: 4

Intended uses & limitations

You can use this to generate ChatGPT personas. Simply input a persona like below:

from transformers import BartForConditionalGeneration, BartTokenizer

example_english_phrase = "photographer"
batch = tokenizer(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"], max_new_tokens=150)
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
8.4973 6.3592 0
5.3145 3.2640 1
3.5899 2.8350 2
3.1044 2.6154 3
2.8329 2.5015 4

Framework versions

  • Transformers 4.26.0
  • TensorFlow 2.9.2
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
301
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train merve/chatgpt-prompts-bart-long

Spaces using merve/chatgpt-prompts-bart-long 50