license: apache-2.0
datasets:
- meta-math/MetaMathQA
model-index:
- name: MetaMath-Mistral-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.67
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meta-math/MetaMath-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.58
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meta-math/MetaMath-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.95
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meta-math/MetaMath-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.89
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meta-math/MetaMath-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.77
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meta-math/MetaMath-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.84
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=meta-math/MetaMath-Mistral-7B
name: Open LLM Leaderboard
see our paper in https://arxiv.org/abs/2309.12284
View the project page: https://meta-math.github.io/
Note
All MetaMathQA data are augmented from the training sets of GSM8K and MATH. None of the augmented data is from the testing set.
You can check the original_question
in meta-math/MetaMathQA
, each item is from the GSM8K or MATH train set.
Model Details
MetaMath-Mistral-7B is fully fine-tuned on the MetaMathQA datasets and based on the powerful Mistral-7B model. It is glad to see using MetaMathQA datasets and change the base model from llama-2-7B to Mistral-7b can boost the GSM8K performance from 66.5 to 77.7.
To fine-tune Mistral-7B, I would suggest using a smaller learning rate (usually 1/5 to 1/10 of the lr for LlaMa-2-7B) and staying other training args unchanged. More training details and scripts can be seen at https://github.com/meta-math/MetaMath
Installation
pip install transformers==4.35.0
pip install torch==2.0.1
pip install sentencepiece==0.1.99
pip install tokenizers==0.13.3
pip install accelerate==0.21.0
pip install bitsandbytes==0.40.0
pip install vllm
pip install fraction
pip install protobuf
Model Usage
prompting template:
'''
"Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
'''
where you need to use your query question to replace the {instruction}
There is another interesting repo about Arithmo-Mistral-7B in https://huggingface.co/akjindal53244/Arithmo-Mistral-7B, where they combine our MetaMathQA dataset and MathInstruct datasets to train a powerful model. Thanks agian for their contributions. We would also try to train the combination of MetaMathQA and MathInstruct datasets, and also open all the results and training details.
Experiments
Model | GSM8k Pass@1 | MATH Pass@1 |
---|---|---|
MPT-7B | 6.8 | 3.0 |
Falcon-7B | 6.8 | 2.3 |
LLaMA-1-7B | 11.0 | 2.9 |
LLaMA-2-7B | 14.6 | 2.5 |
MPT-30B | 15.2 | 3.1 |
LLaMA-1-13B | 17.8 | 3.9 |
GPT-Neo-2.7B | 19.5 | -- |
Falcon-40B | 19.6 | 2.5 |
Baichuan-chat-13B | 23.9 | -- |
Vicuna-v1.3-13B | 27.6 | -- |
LLaMA-2-13B | 28.7 | 3.9 |
InternLM-7B | 31.2 | -- |
ChatGLM-2-6B | 32.4 | -- |
GPT-J-6B | 34.9 | -- |
LLaMA-1-33B | 35.6 | 3.9 |
LLaMA-2-34B | 42.2 | 6.24 |
RFT-7B | 50.3 | -- |
LLaMA-1-65B | 50.9 | 10.6 |
Qwen-7B | 51.6 | -- |
WizardMath-7B | 54.9 | 10.7 |
LLaMA-2-70B | 56.8 | 13.5 |
WizardMath-13B | 63.9 | 14.0 |
MAmmoTH-7B (COT) | 50.5 | 10.4 |
MAmmoTH-7B (POT+COT) | 53.6 | 31.5 |
Arithmo-Mistral-7B | 74.7 | 25.3 |
MetaMath-7B | 66.5 | 19.8 |
MetaMath-13B | 72.3 | 22.4 |
🔥 MetaMath-Mistral-7B | 77.7 | 28.2 |
Citation
@article{yu2023metamath,
title={MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models},
author={Yu, Longhui and Jiang, Weisen and Shi, Han and Yu, Jincheng and Liu, Zhengying and Zhang, Yu and Kwok, James T and Li, Zhenguo and Weller, Adrian and Liu, Weiyang},
journal={arXiv preprint arXiv:2309.12284},
year={2023}
}
@article{jiang2023mistral,
title={Mistral 7B},
author={Jiang, Albert Q and Sablayrolles, Alexandre and Mensch, Arthur and Bamford, Chris and Chaplot, Devendra Singh and Casas, Diego de las and Bressand, Florian and Lengyel, Gianna and Lample, Guillaume and Saulnier, Lucile and others},
journal={arXiv preprint arXiv:2310.06825},
year={2023}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 65.78 |
AI2 Reasoning Challenge (25-Shot) | 60.67 |
HellaSwag (10-Shot) | 82.58 |
MMLU (5-Shot) | 61.95 |
TruthfulQA (0-shot) | 44.89 |
Winogrande (5-shot) | 75.77 |
GSM8k (5-shot) | 68.84 |