TAPEX (large-sized model)
TAPEX was proposed in TAPEX: Table Pre-training via Learning a Neural SQL Executor by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. The original repo can be found here.
Model description
TAPEX (Table Pre-training via Execution) is a conceptually simple and empirically powerful pre-training approach to empower existing models with table reasoning skills. TAPEX realizes table pre-training by learning a neural SQL executor over a synthetic corpus, which is obtained by automatically synthesizing executable SQL queries.
TAPEX is based on the BART architecture, the transformer encoder-encoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder.
This model is the tapex-base
model fine-tuned on the Tabfact dataset.
Intended Uses
You can use the model for table fact verficiation.
How to Use
Here is how to use this model in transformers:
from transformers import TapexTokenizer, BartForSequenceClassification
import pandas as pd
tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-tabfact")
model = BartForSequenceClassification.from_pretrained("microsoft/tapex-large-finetuned-tabfact")
data = {
"year": [1896, 1900, 1904, 2004, 2008, 2012],
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
}
table = pd.DataFrame.from_dict(data)
# tapex accepts uncased input since it is pre-trained on the uncased corpus
query = "beijing hosts the olympic games in 2012"
encoding = tokenizer(table=table, query=query, return_tensors="pt")
outputs = model(**encoding)
output_id = int(outputs.logits[0].argmax(dim=0))
print(model.config.id2label[output_id])
# Refused
How to Eval
Please find the eval script here.
BibTeX entry and citation info
@inproceedings{
liu2022tapex,
title={{TAPEX}: Table Pre-training via Learning a Neural {SQL} Executor},
author={Qian Liu and Bei Chen and Jiaqi Guo and Morteza Ziyadi and Zeqi Lin and Weizhu Chen and Jian-Guang Lou},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=O50443AsCP}
}
- Downloads last month
- 198