metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 아메리칸투어리스터 STARK 이민가방 2 BLACK GK109001 GK109001 GK109001/FREE 홈앤쇼핑몰
- text: 수리 부품 핸들 교체 캐리어 트롤리 셀프 가방 손잡이 H027그레이1개(가죽자리) 민인터내셔널
- text: 캐리어 사각 네임택 분실방지 골프 여행 가방 이름표 흰색-파리 에펠탑 최첨단mall
- text: 여행소품 TSA 자물쇠 타입 캐리어 고정 벨트 지퍼고장시 분실방지 주식회사 마카롱소프트
- text: 보호 M사이즈 캐리어보호커버 캐리어 스판덱스 커버 TRC805M 위드위너(g)
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9003322259136213
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 12 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
10.0 |
|
8.0 |
|
1.0 |
|
6.0 |
|
5.0 |
|
9.0 |
|
4.0 |
|
0.0 |
|
7.0 |
|
11.0 |
|
3.0 |
|
2.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.9003 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac11")
# Run inference
preds = model("보호 M사이즈 캐리어보호커버 캐리어 스판덱스 커버 TRC805M 위드위너(g)")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 10.4117 | 23 |
Label | Training Sample Count |
---|---|
0.0 | 50 |
1.0 | 50 |
2.0 | 50 |
3.0 | 50 |
4.0 | 50 |
5.0 | 50 |
6.0 | 50 |
7.0 | 50 |
8.0 | 50 |
9.0 | 50 |
10.0 | 50 |
11.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0106 | 1 | 0.3558 | - |
0.5319 | 50 | 0.2892 | - |
1.0638 | 100 | 0.136 | - |
1.5957 | 150 | 0.075 | - |
2.1277 | 200 | 0.0462 | - |
2.6596 | 250 | 0.0302 | - |
3.1915 | 300 | 0.0165 | - |
3.7234 | 350 | 0.0173 | - |
4.2553 | 400 | 0.0096 | - |
4.7872 | 450 | 0.0156 | - |
5.3191 | 500 | 0.004 | - |
5.8511 | 550 | 0.0002 | - |
6.3830 | 600 | 0.0001 | - |
6.9149 | 650 | 0.0001 | - |
7.4468 | 700 | 0.0001 | - |
7.9787 | 750 | 0.0001 | - |
8.5106 | 800 | 0.0001 | - |
9.0426 | 850 | 0.0001 | - |
9.5745 | 900 | 0.0001 | - |
10.1064 | 950 | 0.0001 | - |
10.6383 | 1000 | 0.0001 | - |
11.1702 | 1050 | 0.0001 | - |
11.7021 | 1100 | 0.0 | - |
12.2340 | 1150 | 0.0001 | - |
12.7660 | 1200 | 0.0001 | - |
13.2979 | 1250 | 0.0 | - |
13.8298 | 1300 | 0.0 | - |
14.3617 | 1350 | 0.0001 | - |
14.8936 | 1400 | 0.0 | - |
15.4255 | 1450 | 0.0 | - |
15.9574 | 1500 | 0.0001 | - |
16.4894 | 1550 | 0.0 | - |
17.0213 | 1600 | 0.0001 | - |
17.5532 | 1650 | 0.0 | - |
18.0851 | 1700 | 0.0 | - |
18.6170 | 1750 | 0.0 | - |
19.1489 | 1800 | 0.0 | - |
19.6809 | 1850 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}